Productos
menu item
Prospect
Estimación rápida del potencial solar del emplazamiento fotovoltaico
menu item
Evaluate
Series temporales y datos TMY para modelización energética
menu item
Monitor
Evaluación de la producción fotovoltaica en tiempo real
menu item
Forecast
Previsión de la producción de energía solar para hasta 14 días
menu item
Analyst
Gestión de datos solares simplificada y unificada
menu item
Integraciones
Automatice la entrega de datos Solargis
Casos de uso
menu item
Selección de emplazamientos
Encuentre la ubicación adecuada para su proyecto solar
menu item
Simulación de la producción de energía
Analice los beneficios y riesgos potenciales
menu item
Optimización del diseño de plantas de generación eléctrica
Encuentre el diseño óptimo de la central eléctrica
menu item
Rendimiento real de plantas de generación eléctrica
Conozca la verdadera producción eléctrica
menu item
Predicción de generación
Obtenga predicciones de la producción de energía del proyecto solar
menu item
Verificación de datos de tierra
Verifique la calidad de las mediciones solares y meteorológicas
Evaluación de recursos solares y meteorología
Validación y evaluación detallada del recurso solar
Adaptación al sitio de modelos Solargis
Combinación de datos de satélite con mediciones de tierra
Control de calidad de mediciones solares y meteorológicas
Corrección de errores en los datos medidos en tierra
Datos GIS personalizados
Datos GIS de Solargis personalizados para sus aplicaciones
Evaluación de la producción de energía fotovoltaica
Estimación de incertidumbres de energía y datos de entrada relacionados
Evaluación del rendimiento fotovoltaico
Estimación de energía para refinanciación o adquisición de activos
Estudio de variabilidad fotovoltaica y optimización de almacenamiento
Comprensión de la variabilidad de la producción en amplias regiones geográficas
Estudio del potencial regional de energía solar
Identificación de ubicaciones para plantas de energía solar
Nuestra experiencia y conocimientos
Cómo funciona nuestra tecnología
Metodología
Cómo transformamos la ciencia en tecnología
Guías de productos y documentación
Notas de la versión
Casos de éxito
Blog
Ebooks
Seminarios web
Publicaciones
Eventos
Mapas y datos GIS gratuitos
Mapas de rendimiento solar
Acerca de Solargis
Socios
Certificación ISO
Empleo

Esta página aún no está traducida al español. Puede verla sólo en inglés.

New generation Solargis Evaluate: data, PV design & simulation, analysis, and reports in one cloud-based solution. Discover more ->

Solar radiation takes a long journey until it reaches Earth’s surface. So when modelling solar radiation, various interactions of extra-terrestrial solar radiation with the Earth’s atmosphere, surface and objects are to be taken into account.

Overview

State-of-art solar irradiance models as Solargis make use of the most modern input data (satellite and atmospheric), which are systematically quality-controlled and validated. Models and input data are integrated and regionally adapted to perform reliably at a wide range of geographical conditions.

This process is based on sound theoretical grounds and shows consistent and computationally stable results. Old approaches are typically less elaborated, thus cannot reach the accuracy of the modern models. Even if the models are based on similar principles, differences in implementation may result in different outputs.

Satellite-based irradiance models are able to estimate the solar radiation levels (historic, recent and future levels) without the need of installing ground sensors at the location of interest. Satellite-based irradiance models range from physically rigorous to purely empirical:

  • Physical models attempt to explain observed earth’s radiance by solving radiative-transfer equations. These models require precise information on the composition of the atmosphere and also depend on accurate calibration from the satellite sensors.
  • Empirical models consist of a simple regression between the satellite visible channel’s recorded intensity and a measuring station at the earth’s surface.
  • Semi-empirical models use a simple radiative-transfer approach and some degree of fitting to observations. Today, all operational approaches are based on the use of this.

Solargis algorithms

For historical and recent data, Solargis uses a semi-empirical solar radiation model. Data from satellites are used for identification of cloud properties using the most advance algorithms. Most of the physical processes of atmospheric attenuation of solar radiation are considered and some physical parameters on the input are also used. Therefore, this approach is capable to reproduce real situations.

On the other hand, outputs from operational numerical weather models (NWP) are used for forecast data; in the post-processing phase, operationally calculated information from the satellite model is used for dynamic improvement of the accuracy of the forecast.

The solar radiation retrieval in Solargis satellite-to-irradiance model is basically split into three steps:

  • First, the clear-sky irradiance (the irradiance reaching ground with assumption of absence of clouds) is calculated using the clear-sky model.
  • Second, the satellite data (information from several geostationary satellites) used to quantify the attenuation effect of clouds by means of cloud index calculation. The clear-sky irradiance is coupled with cloud index to retrieve all-sky irradiance. The outcome of the procedure is direct normal and global horizontal irradiance.
  • Third, direct normal and global horizontal irradiance are used for computing diffuse and global tilted irradiance (irradiance in plane of array, on tilted or tracking surfaces) and/or irradiance corrected for shading effects from surrounding terrain or objects.

 

SG Methodology scheme sand

Solargis methodology scheme

 

Solargis inputs description

The most advanced input data are used in the Solargis algorithms. As a result, satellite-data secure very high temporal coverage (more than 99% in most of regions). The supplied time-series data have all the gaps filled using intelligent algorithms.

Primary time step of solar resource parameters is 15 minutes for MSG satellite area, 30-minutes for MFG and MTSAT satellite area, and 30-minutes (and partially up to 3 hourly) for GOES satellite area. Atmospheric parameters (aerosols and water vapour) represent daily data.

Spatial resolution of Meteosat, GOES, and MTSAT data considered in the calculation scheme is approximately 3 km at sub-satellite point (more details in the table below). Model outputs are resampled to 2 arc-minutes (app. 4x4 km) regular grid in WGS84 geographical coordinate system.

The spatial resolution of data products is enhanced up to 3 arc-seconds (which is about 90 meters at the equator, less towards the poles).

 

Input data used in the Solargis model

Input data used in the Solargis model

 

 

Approximate pixel size for different regions covered by satellites for the cloud index calculation

Approximate pixel size for different regions covered by satellites for the cloud index calculation

Frequently Asked Questions#