Produkty
menu item
Prospect
Odhadnite solárny potenciál vašej lokality
menu item
Evaluate
Time Series a TMY dáta pre optimálny dizajn elektrárne
menu item
Monitor
Hodnotenie fotovoltického výstupu v reálnom čase
menu item
Forecast
Predpoveď výroby solárnej energie na až 14 dní
menu item
Analyst
Spravujte všetky solárne dáta na jednom mieste
menu item
Integrácie
Automatizujte dodávku Solargis dát
Príklady použitia
menu item
Výber lokality
Nájdite správnu lokalitu pre váš solárny projekt
menu item
Simulácia energetického výnosu
Analyzujte potenciálne zisky a riziká
menu item
Optimalizácia návrhu elektrárne
Nájdite optimálny dizajn pre vašu solárnu elektráreň
menu item
Skutočný výkon elektrárne
Poznajte skutočný výnos vašej elektrárne
menu item
Predpoveď výkonu
Predpovedajte výnos z vášho solárneho projektu
menu item
Overenie pozemných dát
Overte si kvalitu solárnych a meteo meraní
Hodnotenie solárneho zdroja a meteorologických dát
Detailné hodnotenie a validácia solárneho zdroja
Prispôsobenie modelov Solargis lokalite
Kombinácia satelitných dát s lokálnymi meraniami
Kontrola kvality solárnych a meteorologických meraní
Oprava chýb v dátach z pozemných meraní
GIS dáta na mieru
Solargis GIS dáta prispôsobené pre vaše aplikácie
Posúdenie energetického výnosu z fotovoltiky
Odhadnite neistotu vstupných dát
Hodnotenie výkonu fotovoltiky
Odhad energie pre refinancovanie alebo akvizíciu
Štúdia PV variability a optimalizácie skladovania energie
Pochopte variabilitu výstupu naprieč regiónmi
Regionálna štúdia potenciálu solárnej energie
Identifikácia lokalít pre solárne elektrárne
Naša expertíza
Ako naša technológia funguje?
Metodológia
Ako preklápame vedu do technológie?
API & integrácia
Ako integrovať Solargis dáta cez API
Príručky a dokumentácia
Release notes
Príbehy klientov
Blog
Ebooky
Webináre
Publikácie
Udalosti
Bezplatné mapy a GIS dáta
Mapy solárneho výkonu
O spoločnosti Solargis
Partneri
ISO certifikáty
Kariéra

Táto stránka zatiaľ nie je preložená do slovenčiny. Pozrieť si ju môžete v angličtine.

To evaluate the accuracy of Solargis albedo data products, a comparison between Solargis estimates and ground measurements of albedo has been made. Details of the ground measurements used for validation purpose are given in the table below.

Station name Latitude, Longitude Data source Installation height Field of view Period of evaluation*
Metolius Mature Pine 44.452, -121.557 AMERIFLUX 32 m 0.16 km2 2011 to 2015
Morgan Monroe State Forest 39.323, -86.413 AMERIFLUX 46 m 0.33 km2 2011 to 2015
Willow Creek 45.806, -90.08 AMERIFLUX 29.6 m 0.14 km2 2011 to 2015
Walnut Gulch Kendall Grasslands 31.737, -109.942 AMERIFLUX 3 m 0.0014 km2 2011 to 2015
Fort Peck 48.308, -105.102 SURFRAD 10 m 0.015 km2 2011 to 2015
Desert Rock 36.624, -116.019 SURFRAD 10 m 0.015 km2

2011 to 2015

Table Mountain 40.125, -105.237 SURFRAD 10 m 0.015 km2 2011 to 2015
Bondville 40.052, -88.373 SURFRAD 10 m 0.015 km2 2011 to 2015

* The averaging period of the Solargis monthly average database [2006 to 2015] is different from the period of albedo measurements [2011 to 2015].

Although this validation exercise is limited to a relatively small set of locations, they represent a reasonably broad climatic diversity.

Satellite vs albedometer field of view

It is important to highlight that the field of view of an albedometer is typically smaller than the area covered by a pixel of satellite imagery. The spatial resolution of Solargis albedo data products is 0.25 km2 (for time series product) or 1 km2 (for the monthly-average product). Whereas the surface area covered by the FOV (field of view) of the albedometer varies as a function of the installation height from 0.001 km2 (for albedometer at 1.5m) to 0.14 km2 (for albedometer at height of 30m)

When looking at satellite pictures of the area surrounding the albedometers, we see that land cover is not always homogenous. Figure 1 show pictures of satellite views of some locations. In case of Bondville, there is strong heterogeneity in the pixel in relation to the FOV of the instrument at 10m. Similar heterogeneity is seen for Desert Rock, although less pronounced. The Morgan Monroe location seems to present the greatest homogeneity among the four locations.

composite locations google earth

Figure 1. Satellite views of the locations of Bondville, Desert Rock, Morgan Monroe State Forest and Walnut Gulch Kendall Grasslands. Pictures show areas that approximately have the same pixel size as of the satellite (500m)

The evaluation of the accuracy of Solargis albedo products is thus affected by the difference in areas covered by the FOV of albedometers and the satellite pixel.

Estimation of uncertainty of Solargis albedo data

To estimate the uncertainty of Solargis albedo values, an approach based on statistical deviations between Solargis estimates and ground observations has been considered. This uncertainty also includes uncertainty due to the differences in FOV of satellite-based estimates and ground-based observations.

Two percentile thresholds have been selected for the statistical significance of the uncertainty: P68 (± 1 standard deviation of the normal distribution) and P95.

 

Time-series product

Monthly average product (Prospect database)

Conditions

U at 1STDEV [68%]

U at 2STDEV [95%]

U at 1STDEV [68%]

U at 2STDEV [95%]

All conditions

±0.029

±0.081

±0.026

±0.045

No snow (<=0.4)

±0.026

±0.071

±0.0194

±0.039

Snow (>0.4)

±0.159

±0.218

Nan

Nan

(Nan values are due to lack of data to infer statistics)

Uncertainty values have been provided separately for no-snow and snow when possible (e.g. for desert or tropical areas) because snow is a specific event that doesn't occur everywhere.

An extension of the validation study is of great interest to confirm and reinforce these results.