Produkty
menu item
Prospect
Odhadnite solárny potenciál vašej lokality
menu item
Evaluate
Time Series a TMY dáta pre optimálny dizajn elektrárne
menu item
Monitor
Hodnotenie fotovoltického výstupu v reálnom čase
menu item
Forecast
Predpoveď výroby solárnej energie na až 14 dní
menu item
Analyst
Spravujte všetky solárne dáta na jednom mieste
menu item
Integrácie
Automatizujte dodávku Solargis dát
Príklady použitia
menu item
Výber lokality
Nájdite správnu lokalitu pre váš solárny projekt
menu item
Simulácia energetického výnosu
Analyzujte potenciálne zisky a riziká
menu item
Optimalizácia návrhu elektrárne
Nájdite optimálny dizajn pre vašu solárnu elektráreň
menu item
Skutočný výkon elektrárne
Poznajte skutočný výnos vašej elektrárne
menu item
Predpoveď výkonu
Predpovedajte výnos z vášho solárneho projektu
menu item
Overenie pozemných dát
Overte si kvalitu solárnych a meteo meraní
Hodnotenie solárneho zdroja a meteorologických dát
Detailné hodnotenie a validácia solárneho zdroja
Prispôsobenie modelov Solargis lokalite
Kombinácia satelitných dát s lokálnymi meraniami
Kontrola kvality solárnych a meteorologických meraní
Oprava chýb v dátach z pozemných meraní
GIS dáta na mieru
Solargis GIS dáta prispôsobené pre vaše aplikácie
Posúdenie energetického výnosu z fotovoltiky
Odhadnite neistotu vstupných dát
Hodnotenie výkonu fotovoltiky
Odhad energie pre refinancovanie alebo akvizíciu
Štúdia PV variability a optimalizácie skladovania energie
Pochopte variabilitu výstupu naprieč regiónmi
Regionálna štúdia potenciálu solárnej energie
Identifikácia lokalít pre solárne elektrárne
Naša expertíza
Ako naša technológia funguje?
Metodológia
Ako preklápame vedu do technológie?
API & integrácia
Ako integrovať Solargis dáta cez API
Príručky a dokumentácia
Release notes
Príbehy klientov
Blog
Ebooky
Webináre
Publikácie
Udalosti
Bezplatné mapy a GIS dáta
Mapy solárneho výkonu
O spoločnosti Solargis
Partneri
ISO certifikáty
Kariéra

Táto stránka zatiaľ nie je preložená do slovenčiny. Pozrieť si ju môžete v angličtine.

Several independent comparisons of solar radiation databases have been performed in recent years. In all these comparisons, Solargis has been identified as the best performing database. Results of two of these comparison studies are available publicly and are summarised below.

IEA’s 2023 Worldwide Benchmark study shows the highest overall GHI and DNI accuracy for Solargis model

As a result of a new collaborative effort of international experts in the field of solar energy, International Energy Agency (IEA) released the report titled "Worldwide Benchmark of Modeled Solar Irradiance Data 2023". This work was done under one of the IEA’s tasks in the PV Power Systems Programme. Specifically, under Task no. 16 with the title "Solar Resource for High Penetration and Large-Scale Applications".

The report presents a benchmark of model-derived direct normal irradiance (DNI) as well as global horizontal irradiance (GHI) data at the sites of 129 globally distributed ground-based radiation measurement stations. 

The benchmark results show "noticeable deviations in performance between the various modeled data sets" that were evaluated. 

In particular, deviation metrics of data sets based mainly on geostationary satellite imagery are closer to each other than to the NWP-based and polar satellite-based data sets. Specifically, the report mentions that “lowest average deviation metrics are often achieved by a single data set (Solargis)”.

IEA satellite data validation study 2014 - by Pierre Ineichen, University of Geneva

This study presents results of a validation in the European and Mediterranean region of satellite-derived irradiation databases in hourly, daily and monthly values. GHI and DNI data from 6 satellite-irradiance-models were compared with high quality measurements from 18 locations. Up to 16 years of continuous measurements have been used for the validation. The locations chosen for validation cover different climate conditions - from desert to oceanic, the latitude varies from 20°N to 60°N, and the altitudes from sea level to 1580 metres.

Solargis has been identified as the data source with the lowest overall bias, lowest mean bias deviation, and lowest RMSD. A summary of the validation results in presented in the table below.

    Solargis Helioclim 3 Solemi Heliomont CM-SAF IrSOLaV
GHI Mean bias 0% 1% 2% 1% 0% 1%
Standard deviation of biases 2.1% 5.1% 4.8% 3.6% 3.7% 4.2%
DNI Mean bias -2% 6% -11% 0% 2% 0%
Standard deviation of biases 5.9% 13.9% 14.5% 9.3% 9.1% 12%

The IEA SHC Task 36 data inter-comparison study 2011 - by Pierre Ineichen, University of Geneva

In this study, GHI and DNI data from five satellite derived irradiation database are compared with high quality measurements from 23 locations across Europe, Middle East and Africa for the year 2006 (365 days). The models validated in this study include:

  • Solargis
  • SoDa Helioclim
  • 3Tier (Vaisala)
  • IrSOLaV
  • University of Oldenburg (EnMetSol-Solis and EnMetSol-Dumortier)

The Solargis database demonstrated the lowest bias and RMSD values amongst all data sources.

Comparison of Annual Global Horizontal Irradiation Maps for Australia - by Jessie K Copper and Anna Bruce, University of New South Wales

This study undertook a cross comparison of the annual global horizontal irradiation data sources available for Australia. The models validated in this study include: Solargis, Meteonorm 7.2, NASA POWER, Vaisala, MERRA-2, Australian Bureau of Meteorology (BoM) gridded solar data.

Besides other conclusions also this study found that Solargis database demonstrated the lowest bias and RMSD values amongst compared data sources.

Solargis NASA POWER MERRA-2 Australian Bureau of Meteorology
GHI Mean bias 0.0% -0.9% 5.9% -0.4%
Standard deviation of biases 1.50% 3.72% 4.46% 2.23%

Other studies

Solar Resource Assessment over Kuwait: Validation of Satellite-derived Data and Reanalysis Modeling by Majed AL-Rasheedi, Christian A. Gueymard, Alaa Ismail and Salem AL-Hajraf, EuroSun 2014 Conference Proceedings, 16-19 September 2014

Satellite or ground-based measurements for production of site specific hourly irradiance data: Which is most accurate and where? by Diane Palmer, Elena Koubli, Ian Cole, Tom Betts, Ralph Gottschalg, Solar Energy, Volume 165, 1 May 2018, Pages 240-255

Validation of solar resource and meteorological data for Japan by Solargis, 2021