Produkty
menu item
Prospect
Odhadnite solárny potenciál vašej lokality
menu item
Evaluate
Time Series a TMY dáta pre optimálny dizajn elektrárne
menu item
Monitor
Hodnotenie fotovoltického výstupu v reálnom čase
menu item
Forecast
Predpoveď výroby solárnej energie na až 14 dní
menu item
Analyst
Spravujte všetky solárne dáta na jednom mieste
menu item
Integrácie
Automatizujte dodávku Solargis dát
Príklady použitia
menu item
Výber lokality
Nájdite správnu lokalitu pre váš solárny projekt
menu item
Simulácia energetického výnosu
Analyzujte potenciálne zisky a riziká
menu item
Optimalizácia návrhu elektrárne
Nájdite optimálny dizajn pre vašu solárnu elektráreň
menu item
Skutočný výkon elektrárne
Poznajte skutočný výnos vašej elektrárne
menu item
Predpoveď výkonu
Predpovedajte výnos z vášho solárneho projektu
menu item
Overenie pozemných dát
Overte si kvalitu solárnych a meteo meraní
Hodnotenie solárneho zdroja a meteorologických dát
Detailné hodnotenie a validácia solárneho zdroja
Prispôsobenie modelov Solargis lokalite
Kombinácia satelitných dát s lokálnymi meraniami
Kontrola kvality solárnych a meteorologických meraní
Oprava chýb v dátach z pozemných meraní
GIS dáta na mieru
Solargis GIS dáta prispôsobené pre vaše aplikácie
Posúdenie energetického výnosu z fotovoltiky
Odhadnite neistotu vstupných dát
Hodnotenie výkonu fotovoltiky
Odhad energie pre refinancovanie alebo akvizíciu
Štúdia PV variability a optimalizácie skladovania energie
Pochopte variabilitu výstupu naprieč regiónmi
Regionálna štúdia potenciálu solárnej energie
Identifikácia lokalít pre solárne elektrárne
Naša expertíza
Ako naša technológia funguje?
Metodológia
Ako preklápame vedu do technológie?
API & integrácia
Ako integrovať Solargis dáta cez API
Príručky a dokumentácia
Release notes
Príbehy klientov
Blog
Ebooky
Webináre
Publikácie
Udalosti
Bezplatné mapy a GIS dáta
Mapy solárneho výkonu
O spoločnosti Solargis
Partneri
ISO certifikáty
Kariéra

Táto stránka zatiaľ nie je preložená do slovenčiny. Pozrieť si ju môžete v angličtine.

The performance of meteorological data is characterized by comparison with good quality ground measurements from weather stations. Bias or Mean Bias Deviation (MBD) characterizes systematic model deviations at a given site, i.e. systematic over- or underestimation: bias values will be above zero when satellite modelled values are overestimating and below zero when underestimating (in comparison to ground measurements).

A validation procedure was carried out to compare the modelled data from the Solargis database with ground-measured data from the meteorological stations available through NOAA Integrated Surface Database (ISD) network. In the comparison 11,516 stations were used and the compared data period was going from 2006 to 2015.

The validation of meteorological information provided in Solargis data deliveries are presented for three parameters: Temperature at 2 metres, Wind Speed at 10 metres and Relative Humidity. The validation statistics of these three parameters show good results in terms of accuracy: average bias close to zero and low standard deviation of bias. Aggregated results are shown in the table and individual statistics are represented in the maps below.

It should be noted that in general data from the meteorological models represent a larger area, and they are not capable of accurately representing the local microclimates, especially in mountainous and coastal zones. This also means that complex areas with lot of contrast are more prone to see higher deviations. Areas with limited availability of data from weather stations, which are used as an input for the NWP models, would be also prone to show such differences. In addition, very extreme weather phenomena cannot be estimated with high precision using modelled data.

From the validation results represented in the maps below we can see this behaviour. Places with higher bias between measured and modelled data are typically located next to mountain areas, coast places and in general areas where the landscape and microclimatic conditions changes more intensively and less gradually. Looking at the bias statistics, it is also to be noted that the deviations during night-time are usually higher, i.e. the values provided during the solar power generation hours are in general estimated with lower uncertainty.

A correct evaluation and interpretation of uncertainty is very much related to expert decision making based on the knowledge collected from the experience in working with the data. If available, the use of ground measured data next to the project site is recommended for performing site-adaptation, i.e. correlation of the data by comparing the modelled data with the ground measured data. This procedure would allow correcting these deviations and improve the accuracy of the modelled data for that specific site.

 

Validation statistics for temperature, wind speed and relative humidity data provided in Solargis. Aggregated results across the 11,516 stations.

11516 stations

Map of global all-day air temperature at 2 m bias distribution

temperature

Map of global all-day wind speed bias distribution

wind speed

Map of global all-day relative humidity bias distribution

relative humidity