Produkty
menu item
Prospect
Odhadnite solárny potenciál vašej lokality
menu item
Evaluate
Time Series a TMY dáta pre optimálny dizajn elektrárne
menu item
Monitor
Hodnotenie fotovoltického výstupu v reálnom čase
menu item
Forecast
Predpoveď výroby solárnej energie na až 14 dní
menu item
Analyst
Spravujte všetky solárne dáta na jednom mieste
menu item
Integrácie
Automatizujte dodávku Solargis dát
Príklady použitia
menu item
Výber lokality
Nájdite správnu lokalitu pre váš solárny projekt
menu item
Simulácia energetického výnosu
Analyzujte potenciálne zisky a riziká
menu item
Optimalizácia návrhu elektrárne
Nájdite optimálny dizajn pre vašu solárnu elektráreň
menu item
Skutočný výkon elektrárne
Poznajte skutočný výnos vašej elektrárne
menu item
Predpoveď výkonu
Predpovedajte výnos z vášho solárneho projektu
menu item
Overenie pozemných dát
Overte si kvalitu solárnych a meteo meraní
Hodnotenie solárneho zdroja a meteorologických dát
Detailné hodnotenie a validácia solárneho zdroja
Prispôsobenie modelov Solargis lokalite
Kombinácia satelitných dát s lokálnymi meraniami
Kontrola kvality solárnych a meteorologických meraní
Oprava chýb v dátach z pozemných meraní
GIS dáta na mieru
Solargis GIS dáta prispôsobené pre vaše aplikácie
Posúdenie energetického výnosu z fotovoltiky
Odhadnite neistotu vstupných dát
Hodnotenie výkonu fotovoltiky
Odhad energie pre refinancovanie alebo akvizíciu
Štúdia PV variability a optimalizácie skladovania energie
Pochopte variabilitu výstupu naprieč regiónmi
Regionálna štúdia potenciálu solárnej energie
Identifikácia lokalít pre solárne elektrárne
Naša expertíza
Ako naša technológia funguje?
Metodológia
Ako preklápame vedu do technológie?
API & integrácia
Ako integrovať Solargis dáta cez API
Príručky a dokumentácia
Release notes
Príbehy klientov
Blog
Ebooky
Webináre
Publikácie
Udalosti
Bezplatné mapy a GIS dáta
Mapy solárneho výkonu
O spoločnosti Solargis
Partneri
ISO certifikáty
Kariéra

Táto stránka zatiaľ nie je preložená do slovenčiny. Pozrieť si ju môžete v angličtine.

Two years ago, Storm Uri unleashed a deep freeze over Texas, causing widespread power outages that affected more than 4.5 million people. The drastic changes in temperature during the storm not only reduced natural gas production and froze wind turbines across the State, but also had widespread impacts on solar plants.

When the grid network collapsed during the storm, many PV plants were unable to restore power after shutting down. One of the reasons was that the total Open Circuit Voltage (VOC) was higher than their inverters’ DC start-up voltage range – leading to performance issues and impacting PV power components.

Storm Uri, in retrospect, provides an important lesson in solar project design: Having access to solar Time Series data, and using the information gathered from that data during the design stage of a solar project, informs and significantly strengthens a solar project’s resilience to extreme weather events, alongside drastic changes in temperature.

Ambient temperature 1
Figure 1: Ambient Temperature (temp) from the year 1999 to 2021. 
X-axis: years from 1999 to 2021, Y-axis: temperature from -15°C to 40°C.

Ambient temperature heatmap 1
Figure 2: Ambient Temperature Heatmap for 2021. Dark blue - extreme negative weather events.
The color scale is in degrees Celsius.


Solargis Analyst recorded temperatures dropping significantly below long-term averages and historical data during Storm Uri, as seen in Figures 1 and 2.


Time Series data vs. TMY datasets

Inverter experts have highlighted the importance of considering extreme weather conditions when designing PV configurations to ensure system reliability and prevent downtime.

They emphasize that extreme weather events, such as snow, freezing rain, and low temperatures can cause moisture in the air, which can result in inverters turning off and over-voltage issues, due to lower impedance in cables and electrical wiring.

Solar cells, meanwhile, are temperature-sensitive and can be affected by extreme weather conditions. However, extreme temperatures are usually not considered during the design phase of a solar project, and the industry continues to rely on Typical Meteorological Year (TMY) datasets for the design of a project – causing blind spots in design strength and potentially resulting in greater financial losses, as was seen in the aftermath of Storm Uri.

temperature histogram 1
Figure 3: Temperature Histogram in Celsius: TMY P50 (blue), TMY P90 (orange), Time-Series (green); a histogram of the actual historical data (from 1999 to 2023) and the TMY files are shown (from Solargis Analyst).

Figure 3, taken from Solargis Analyst, highlights the importance of utilizing accurate data and not over relying on TMY scenarios in the design and planning of solar power projects. The stark contrast between the temperature values in these datasets – at the time of Storm Uri – can be seen by looking at the negative part of the graph. 

The percentage of these negative values is close to 0%, illustrating the magnitude of variation that can occur during extreme weather conditions, such as snowstorms. Figure 3 clearly depicts that only the Time Series data accurately captured the extremely low-temperature events (indicated within the circled values), while the TMY datasets could not account for such events, as they represent only typical probabilistic scenarios.  

The varying shades of each color in figure 3, which correspond to each dataset, highlight the accumulation of data points – with lighter shades indicating a lower density of data. This, once again, emphasizes the rarity of such low-temperature values that can only be observed through time series files.


The importance of Times Series data in project design

The findings from figure 3 demonstrate the importance of utilizing accurate multi-year Time Series data for a more comprehensive understanding of the potential impacts of extreme weather events on solar power systems.

To strengthen a solar project’s design against such events, it is crucial to study and use accurate data to make informed decisions, particularly throughout the early design phase of solar power projects. Doing so helps determine the number of modules to connect in series and parallel to each inverter and ensure that projects are built to withstand extreme weather conditions.

Accurate historical temperature and irradiation values are also crucial for analyzing trends, predicting scenarios, and making informed decisions while designing photovoltaic projects. Utilizing probabilistic scenarios, analyzing the long-term average, maximum and minimum values of temperature and irradiance data unlocks better-informed decisions and ensures that a solar project is built to withstand extreme weather and temperature conditions.

Find out more about how Solargis’ data, software and consultancy services can support project design and solar plant resilience.

Keep reading

Why to use satellite-based solar resource data in PV performance assessment
Best practices

Why to use satellite-based solar resource data in PV performance assessment

It is widely accepted that high-standard pyranometers operated under rigorously controlled conditions are to be used for bankable performance assessment of photovoltaic (PV) power systems.

How Solargis is improving accuracy of solar power forecasts
Best practices

How Solargis is improving accuracy of solar power forecasts

Just as there are horses for courses, different forecasting techniques are more suitable depending on the intended forecast lead time.

How to calculate P90 (or other Pxx) PV energy yield estimates
Best practices

How to calculate P90 (or other Pxx) PV energy yield estimates

To assess the solar resource or energy yield potential of a site, we model the solar resource/energy yield using best available information and methods. The resulting estimate is the P50 estimate, or in other words, the “best estimate”. P50 is essentially a statistical level of confidence suggesting that we expect to exceed the predicted solar resource/energy yield 50% of the time. However, ...