Produkty
menu item
Prospect
Odhadnite solárny potenciál vašej lokality
menu item
Evaluate
Time Series a TMY dáta pre optimálny dizajn elektrárne
menu item
Monitor
Hodnotenie fotovoltického výstupu v reálnom čase
menu item
Forecast
Predpoveď výroby solárnej energie na až 14 dní
menu item
Analyst
Spravujte všetky solárne dáta na jednom mieste
menu item
Integrácie
Automatizujte dodávku Solargis dát
Príklady použitia
menu item
Výber lokality
Nájdite správnu lokalitu pre váš solárny projekt
menu item
Simulácia energetického výnosu
Analyzujte potenciálne zisky a riziká
menu item
Optimalizácia návrhu elektrárne
Nájdite optimálny dizajn pre vašu solárnu elektráreň
menu item
Skutočný výkon elektrárne
Poznajte skutočný výnos vašej elektrárne
menu item
Predpoveď výkonu
Predpovedajte výnos z vášho solárneho projektu
menu item
Overenie pozemných dát
Overte si kvalitu solárnych a meteo meraní
Hodnotenie solárneho zdroja a meteorologických dát
Detailné hodnotenie a validácia solárneho zdroja
Prispôsobenie modelov Solargis lokalite
Kombinácia satelitných dát s lokálnymi meraniami
Kontrola kvality solárnych a meteorologických meraní
Oprava chýb v dátach z pozemných meraní
GIS dáta na mieru
Solargis GIS dáta prispôsobené pre vaše aplikácie
Posúdenie energetického výnosu z fotovoltiky
Odhadnite neistotu vstupných dát
Hodnotenie výkonu fotovoltiky
Odhad energie pre refinancovanie alebo akvizíciu
Štúdia PV variability a optimalizácie skladovania energie
Pochopte variabilitu výstupu naprieč regiónmi
Regionálna štúdia potenciálu solárnej energie
Identifikácia lokalít pre solárne elektrárne
Naša expertíza
Ako naša technológia funguje?
Metodológia
Ako preklápame vedu do technológie?
API & integrácia
Ako integrovať Solargis dáta cez API
Príručky a dokumentácia
Release notes
Príbehy klientov
Blog
Ebooky
Webináre
Publikácie
Udalosti
Bezplatné mapy a GIS dáta
Mapy solárneho výkonu
O spoločnosti Solargis
Partneri
ISO certifikáty
Kariéra

Táto stránka zatiaľ nie je preložená do slovenčiny. Pozrieť si ju môžete v angličtine.

After solar irradiance received by the PV system, the module’s temperature is the most important factor to take into account for the efficiency of PV systems.

When PV modules get warmer, their conversion efficiency decreases.

In other words, PV modules are expected to provide the highest power output in moments of high solar irradiance, but low air temperature. Temperature is also a key parameter that influences how the PV systems are sized. To determine the maximum number of PV modules in a string, calculations are based on the lowest expected operating temperature (TLEO).

To calculate the temperature of PV modules, we therefore need to have accurate air temperature data as the main input for running our calculations. Simulation algorithms will then obtain the expected module temperature by adding the effect of solar irradiance, and the convective heat exchange due to wind, calculated for the specific PV system mounting type.

In this article, we share how Solargis has improved the accuracy of air temperature datasets we provide along with other parameters affecting solar energy power simulations.

Temperature map by Solargis Prospect

Temperature map by Solargis Prospect

Reanalysis models

Currently, reanalysis models provide the most accurate source of gridded air temperature data that can be used for running PV simulations at the global scale.

Reanalysis data, as we can almost imply by its term, is the result of "analyzing" Numerical Weather Prediction models (NWP) again. This can be done after collecting the real observations of the previously predicted periods. In other words, it's like calculating the model "to the past" instead of doing it "to the future" using the most updated observations.

The result is a comprehensive set of meteorological variables covering the world with relatively high temporal resolution (typically hourly) and low spatial resolution (typically tens of kilometers).

Model blending

Having the most accurate global data inputs means relying on the right global weather models. One of the most prominent weather model prediction centers is the European Centre for Medium-Range Weather Forecasts (ECMWF).

Headquartered in Reading, UK, ECMWF can provide data for any site globally thanks to their powerful network of observations and high computation capacity with one of the largest supercomputers in Europe.

In particular, we have identified two models which are especially interesting for solar energy modeling purposes:

  • ERA5 is a comprehensive reanalysis assimilating a vast array of observations from the upper atmosphere and near surface. It employs a coupled atmospheric model with a spatial resolution of 30 km, alongside a land surface model and a wave model.
  • Conversely, ERA5-Land is a high-resolution (9 km) land surface, forced by ERA5 atmospheric parameters with lapse rate correction, but it does not include additional data assimilation.

When talking about blending models, it is important to note that it is not as simple as running simple weighted averages from the input models. It requires expert eyes on the data to apply it effectively and knowing in which situations each model is expected to perform better.

Results

After comparing both models with ground measurements from NOAA's Integrated Surface Database (ISD) network of stations, we can conclude that both ERA5 and ERA5-Land provide comparable accuracy in their long-term temperature averages.

However, ERA5-Land offers enhanced detail in land-surface variables and higher spatial resolution compared to ERA5. Due to the differences in vertical resolution, land-surface parameterization, and postprocessing, ERA5-Land helps eliminate fluctuations and exhibits smoother daily temperature profiles.

Besides, ERA5-Land helps mitigate the issue of missing coastal data, effectively filling the gaps in coastal pixels.

Hourly time series of air temperature derived from ERA5 and ERA5 Land

Hourly time series of air temperature derived from ERA5 and ERA5 Land in Belo Horizonte, Brazil, for the period of May 13-19, 2022

Conclusions

Blending ERA5 and ERA5 land models offers improved air temperature information making datasets well-suited for applications requiring high-resolution land-surface variables and smooth temperature profiles.

These efforts to improve site meteorological data are run in parallel with the improvements we constantly make on our satellite-based solar irradiance models that we have discussed in previous articles.

The blended version of ECMWF's ERA5 and ERA5-Land datasets is accessible in long-term averages (Solargis Prospect), Time Series, and TMY data (Solargis Evaluate).

Keep reading

Improved monitoring and forecasting service for Indian Ocean region
Product updates

Improved monitoring and forecasting service for Indian Ocean region

The meteorological satellite Meteosat-7, which had been providing satellite imagery for the Indian Ocean region has now been decommissioned.

New Solargis Prospect app: making pre-feasibility easier and more reliable
Product updates

New Solargis Prospect app: making pre-feasibility easier and more reliable

One of first steps in the development of solar energy projects is a pre-feasibility study. A key requirement is to make decisions on basis of reliable data, with limited time and resources.

Surface Albedo – most frequent questions
Product updates

Surface Albedo – most frequent questions

Due to the impact that surface albedo has in PV yield calculations (mostly when we talk about bifacial modules), we have noticed an increasing interest in knowing more about this parameter. These are the most typical questions we are receiving (with their corresponding answers):