Produkty
menu item
Prospect
Odhadnite solárny potenciál vašej lokality
menu item
Evaluate
Time Series a TMY dáta pre optimálny dizajn elektrárne
menu item
Monitor
Hodnotenie fotovoltického výstupu v reálnom čase
menu item
Forecast
Predpoveď výroby solárnej energie na až 14 dní
menu item
Analyst
Spravujte všetky solárne dáta na jednom mieste
menu item
Integrácie
Automatizujte dodávku Solargis dát
Príklady použitia
menu item
Výber lokality
Nájdite správnu lokalitu pre váš solárny projekt
menu item
Simulácia energetického výnosu
Analyzujte potenciálne zisky a riziká
menu item
Optimalizácia návrhu elektrárne
Nájdite optimálny dizajn pre vašu solárnu elektráreň
menu item
Skutočný výkon elektrárne
Poznajte skutočný výnos vašej elektrárne
menu item
Predpoveď výkonu
Predpovedajte výnos z vášho solárneho projektu
menu item
Overenie pozemných dát
Overte si kvalitu solárnych a meteo meraní
Hodnotenie solárneho zdroja a meteorologických dát
Detailné hodnotenie a validácia solárneho zdroja
Prispôsobenie modelov Solargis lokalite
Kombinácia satelitných dát s lokálnymi meraniami
Kontrola kvality solárnych a meteorologických meraní
Oprava chýb v dátach z pozemných meraní
GIS dáta na mieru
Solargis GIS dáta prispôsobené pre vaše aplikácie
Posúdenie energetického výnosu z fotovoltiky
Odhadnite neistotu vstupných dát
Hodnotenie výkonu fotovoltiky
Odhad energie pre refinancovanie alebo akvizíciu
Štúdia PV variability a optimalizácie skladovania energie
Pochopte variabilitu výstupu naprieč regiónmi
Regionálna štúdia potenciálu solárnej energie
Identifikácia lokalít pre solárne elektrárne
Naša expertíza
Ako naša technológia funguje?
Metodológia
Ako preklápame vedu do technológie?
API & integrácia
Ako integrovať Solargis dáta cez API
Príručky a dokumentácia
Release notes
Príbehy klientov
Blog
Ebooky
Webináre
Publikácie
Udalosti
Bezplatné mapy a GIS dáta
Mapy solárneho výkonu
O spoločnosti Solargis
Partneri
ISO certifikáty
Kariéra

Táto stránka zatiaľ nie je preložená do slovenčiny. Pozrieť si ju môžete v angličtine.

How to check data sources and represented periods

From the project view, under the section "metadata" you can see more details about the source of the data, period of years used in the calculation and other useful information. You can also check and the version of Prospect you are using (remember that it is updated automatically) on the bottom left corner of the screen.

You can check more information about data periods by region on Prospect product page.

prospect version

What spatial and temporal resolutions are used in Prospect ?

The spatial resolution used in Prospect is in the range of 90 m to 4 km, but this depends on the map layer type (solar radiation layers have a higher resolution than meteo layers). 

Prospect app uses sub-hourly irradiance data for internal calculations. Other parameters like ground albedo are used as monthly values for the calculations. For showing the results, solar and meteo data are then aggregated as monthly averages. Some parameters are also shown as hourly-monthly (24x12) profiles.

More information about technical specifications is on Prospect product page.

How is the PVOUT calculated?

The PVOUT is produced according to the used configuration for your simulation using Solargis PV simulation methods.

When no PV configuration is selected, you just get a PVOUT annual average value for a generic PV system that can be found in map data.

The default configuration for generic PV system:

Parameters
PV module technology Crystalline Silicon (c-Si)
Capacity 1kWp
Installation Type Free Standing
Tilt OPTA (site-specific optimum tilt angle)
Inverter EURO efficiency 98
Losses due to dirt, soiling 3.5
DC losses: Mismatch 0.3
DC losses: Cabling 2
AC losses: Transformer 0.9
Inter-row shading 2

Please note that the PVOUT map layer is calculated with a different horizon precision than the calculated PVOUT (thus the GHI data is different).

 

Default parameters can be edited after saving and opening the project details in "PV configuration" section. PVOUT will be recalculated according to the new settings.

Which PV modules are considered in the simulation?

Solargis’ prospecting tool Prospect uses a generic c-Si (mono or polycrystalline) module for the simulations. The reason why we currently use this approach is that Prospect is a tool for pre-feasibility studies, when decisions on modules are typically not finalized.

The below table summarizes the different parameters of the modules used in Prospect simulation.

Parameter description Default value Unit
PV module technology Multi c-Si  
Maximum power output 250 W
Module NOCT temperature 46.2 ºC
Number of cells in series  60  
Reference short circuit current 8.6 A
Reference open circuit voltage 37.6 V
 Reference maximum power current  8.1  A
 Reference maximum power voltage 30.9 V
Maximum power temperature coefficient -0.43 %/K

What is the efficiency assumption for generic cSi modules?

We are not using an efficiency model for conversion of radiation to electricity. We are calculating with default modules and their parameters in a single diode model.

Which inverters are considered in the simulation?

Each inverter type has its own efficiency curve simulated in Prospect, and each curve can be approximated by Euro efficiency number as they are defined in settings.

The Euro efficiency has an impact on the performance ratio (PR). For example in the below picture, when you use a centralized inverter instead of a string inverter, you will gain approximately 1.4% (97.8 - 96.4) on PR result.

The below table summarizes the inverters type (small, string and centralized) as well as default values parameters used in Prospect simulation.

Default inverter simulation parameters Unit Small String Centralized
Maximum AC power kW 2 15 1000
Maximum DC voltage V 480 800 1000
Nominal DC voltage V 400 445 745
Minimum MPPT DC voltage V 180 325 470
Maximum MPPT DC voltage V 480 800 900
Euro efficiency % 95.9 96.4 97.8
CEC efficiency % 96.6 96.5 97.8

How is the optimum angle calculated?

The optimum calculation is related to PV array tilt and this is only from GTI point of view.

This means that the calculation doesn’t take into account electrical connections of PV modules and strings layout, shading losses, mismatch losses etc. Therefore, even if the calculated tilt is optimal for maximum GTI, the expected PVOUT may not be at its maximum due to mentioned electrical losses. 

On the other hand, the azimuth is always set to 180° (and 0° in the Southern hemisphere) for which optimum tilt is calculated.

How is the slope calculated on a specific point?

We provide info on terrain slope, and It is calculated from raster data with a pixel resolution of approximate 90 m (exactly 3 arcsec). It means that for every ~90 m we have an elevation value and the slope is calculated from this array of values.

Please notice that 90 m resolution might not reflect all details of the terrain especially in the rocky mountains.

What models are used for simulations of floating PV?

The current implementation of energy simulation for floating PV systems is based on scientific literature about floating solar. A selection of reference research articles here:

Temperature model of PV modules in existing installations. 

FLOATING PHOTOVOLTAIC MODULE TEMPERATURE OPERATION CHARACTERISTICS, Waithiru Charles Lawrence K., Chang-Sub Won, Dong-Chan Kim, Kwang-wook Kim, Bo-ram Kang, Gun-Hyun Lee, Ogeuk Kwon, Sumin Lee, Power Conversion Research Team, LSIS Corporation Korea, 36th European Photovoltaic Solar Energy Conference and Exhibition, Marseille, France 2019.

Mismatch losses caused by water movement. 

INFLUENCE OF WAVE INDUCED MOVEMENTS ON THE PERFORMANCE OF FLOATING PV SYSTEMS, Maarten Dörenkämper, Daan van der Werf, Kostas Sinapis, Minne de Jong, Wiep Folkerts, TNO-SEAC, 36th European Photovoltaic Solar Energy Conference and Exhibition, Marseille, France 2019.

Since there are existing several types of floating system constructions (usually specifically selected according to local conditions), the results of the calculations for floating PV systems in Prospect should be handled only as preliminary estimation.