Productos
menu item
Prospect
Estimación rápida del potencial solar del emplazamiento fotovoltaico
menu item
Evaluate
Series temporales y datos TMY para modelización energética
menu item
Monitor
Evaluación de la producción fotovoltaica en tiempo real
menu item
Forecast
Previsión de la producción de energía solar para hasta 14 días
menu item
Analyst
Gestión de datos solares simplificada y unificada
menu item
Integraciones
Automatice la entrega de datos Solargis
Casos de uso
menu item
Selección de emplazamientos
Encuentre la ubicación adecuada para su proyecto solar
menu item
Simulación de la producción de energía
Analice los beneficios y riesgos potenciales
menu item
Optimización del diseño de plantas de generación eléctrica
Encuentre el diseño óptimo de la central eléctrica
menu item
Rendimiento real de plantas de generación eléctrica
Conozca la verdadera producción eléctrica
menu item
Predicción de generación
Obtenga predicciones de la producción de energía del proyecto solar
menu item
Verificación de datos de tierra
Verifique la calidad de las mediciones solares y meteorológicas
Evaluación de recursos solares y meteorología
Validación y evaluación detallada del recurso solar
Adaptación al sitio de modelos Solargis
Combinación de datos de satélite con mediciones de tierra
Control de calidad de mediciones solares y meteorológicas
Corrección de errores en los datos medidos en tierra
Datos GIS personalizados
Datos GIS de Solargis personalizados para sus aplicaciones
Evaluación de la producción de energía fotovoltaica
Estimación de incertidumbres de energía y datos de entrada relacionados
Evaluación del rendimiento fotovoltaico
Estimación de energía para refinanciación o adquisición de activos
Estudio de variabilidad fotovoltaica y optimización de almacenamiento
Comprensión de la variabilidad de la producción en amplias regiones geográficas
Estudio del potencial regional de energía solar
Identificación de ubicaciones para plantas de energía solar
Nuestra experiencia y conocimientos
Cómo funciona nuestra tecnología
Metodología
Cómo transformamos la ciencia en tecnología
API e integración
Cómo integrar los datos de Solargis mediante API
Guías de productos y documentación
Notas de la versión
Casos de éxito
Blog
Ebooks
Seminarios web
Publicaciones
Eventos
Mapas y datos GIS gratuitos
Mapas de rendimiento solar
Acerca de Solargis
Socios
Certificación ISO
Empleo

Esta página aún no está traducida al español. Puede verla sólo en inglés.

Whether comparing measurement data with Solargis datasets, performing quality control or analysing trends to extract bankable insights, Solargis’ data team works with huge volumes of data from a variety of sources daily. We spoke with Jozef Dudzak, Data Scientist, and Marketa Jansova PhD, Data Applications Team Leader, about the role of a Solar Data Specialist – and how the Solargis Analyst software transforms complex resource analysis in the solar sector.

analyst blog2

 

Hi Jozef, Hi Marketa. Thanks for speaking with us today. To begin, could you explain the role of a Data Scientist at Solargis?

Jozef: We receive raw solar measurements as CSV files from our customers, which need to be imported and harmonised for further analysis. This means aligning the data records with the metadata, resolving issues such as incorrect time stamps, and ensuring that the formatting is consistent. Next, we undertake quality control tasks, to prepare the data we receive for further analysis.

Good quality solar data is the cornerstone of trusted solar resource analysis. Customers understand this, but, while the industry is taking steps to improve measurement data quality, there is still a lack of consistency in the approaches taken. Part of our role is to verify the measured data thoroughly, ensuring that any errors are identified, and only valid data records are used during downstream analysis.

Once we have quality-controlled data, we analyse it and extract insights for customers. For project developers, our typical task is to use local ground measurements to adapt the Solargis model so that site-specific time series can be computed with reduced uncertainty. Our quality-assessed and harmonised solar measurements are also regularly used in the performance analysis of PV projects.

 

What software tools have historically been used for data analysis in the solar sector?

Jozef: We see that the most widely used data management and analysis tool is still Microsoft Excel. While it is an excellent tool for many data analysis tasks, it has limitations when processing large volumes of time series data which contain inconsistencies. Spreadsheet software is not designed for harmonisation, quality control and sophisticated analysis of solar resource time series data. When receiving measurement data, we often see inconsistent tables, shifted timestamps and lack of synchronicity. The typical spreadsheet software can only import 1 million records – which, depending on the timestep, might not be enough for 2 years, let alone 25 years of historical solar resource and meteorological time series data!

The next level of software sophistication is using custom scripts written in coding languages such as Python. This requires both coding expertise and solar expertise, so is not an accessible route for many businesses in the sector. Additionally, each element of data handling is controlled by scripts, making complex analysis and comparison with multiple datasets time consuming because the process is not interactive – a script needs to be coded, run and refined.

There are basic quality control services available, but they have limited functionality when it comes to delivering reliable and trustworthy quality-controlled data sets. Some solar experts use alternative software from other industries for basic management and visualization, yet struggle when advanced analysis is needed.

 

How does Solargis Analyst boost productivity for solar data analysts?

Marketa: Through our experience, handling solar data from around the world, we knew that the important step is bringing together different functionalities under the same roof. That means advanced quality control, intuitive visualisation, and streamlined data management, all in one place.

We set out to deliver a software platform built for solar analysts, by solar analysts, building our domain expertise into the fabric of the solution. We have already been able to automate labour-intensive tasks such as data harmonisation, quality control and much more besides.

The software streamlines the process of comparing multiple datasets and performing calculations, enabling analysts to work with complex, diverse datasets without needing to spend time creating new scripts.

Jozef: The visualisation tools add further flexibility and they save time – one can easily compare several data sets. There are lots of graphical tools to display the differences in various ways (heat maps, scatter plots, time series plots and so on).

Solargis Analyst also allows to pull together reports and summaries automatically, which means less time on administrative tasks – and more time spent delivering value to clients and stakeholders.

Marketa: We felt it was important to deliver a multi-level experience for users with different skills and needs. The platform provides functions and hints about what to look for, but if an analyst wants to calculate their own variable or data transformation, then Solargis Analyst offers the versatility to do this.

 

What types of data, and in what volumes, can Solargis Analyst work with?

Jozef: Solargis Analyst can handle any type of data in Excel or CSV formats as long as it has a timestamp. The platform is optimised for a range of parameters, such as solar irradiation/irradiance, temperature, wind, precipitation, and other meteorological and atmospheric data.

The only limit to how much data you can use is a computer’s RAM. The largest dataset I have used to date contained 9 million records covering 25 years of data.

 

What are the next steps for domain-specific solar software?

Marketa: The main goal is to expand existing functionality, while creating new functionality for data from a wider range of instrumentation and mounting types. We have also received positive feedback about the automation provided by the platform, so we will be looking to automate additional elements of the software to further simplify analysis and improve productivity.

 

Solar assets are becoming more complex. More data types are being used to sharpen the understanding the asset owners have of their project sites: from solar resource, temperature, albedo to precipitation. Solargis Analyst helps solar Data Analysts compare datasets easily and extract insights faster. To find out more about the new Solargis Analyst platform and explore how it can boost productivity for your solar data team, get in touch at https://solargis.com/about-us/contact

Keep reading

Improved monitoring and forecasting service for Indian Ocean region
Product updates

Improved monitoring and forecasting service for Indian Ocean region

The meteorological satellite Meteosat-7, which had been providing satellite imagery for the Indian Ocean region has now been decommissioned.

New Solargis Prospect app: making pre-feasibility easier and more reliable
Product updates

New Solargis Prospect app: making pre-feasibility easier and more reliable

One of first steps in the development of solar energy projects is a pre-feasibility study. A key requirement is to make decisions on basis of reliable data, with limited time and resources.

Surface Albedo – most frequent questions
Product updates

Surface Albedo – most frequent questions

Due to the impact that surface albedo has in PV yield calculations (mostly when we talk about bifacial modules), we have noticed an increasing interest in knowing more about this parameter. These are the most typical questions we are receiving (with their corresponding answers):