Productos
menu item
Prospect
Estimación rápida del potencial solar del emplazamiento fotovoltaico
menu item
Evaluate
Series temporales y datos TMY para modelización energética
menu item
Monitor
Evaluación de la producción fotovoltaica en tiempo real
menu item
Forecast
Previsión de la producción de energía solar para hasta 14 días
menu item
Analyst
Gestión de datos solares simplificada y unificada
menu item
Integraciones
Automatice la entrega de datos Solargis
Casos de uso
menu item
Selección de emplazamientos
Encuentre la ubicación adecuada para su proyecto solar
menu item
Simulación de la producción de energía
Analice los beneficios y riesgos potenciales
menu item
Optimización del diseño de plantas de generación eléctrica
Encuentre el diseño óptimo de la central eléctrica
menu item
Rendimiento real de plantas de generación eléctrica
Conozca la verdadera producción eléctrica
menu item
Predicción de generación
Obtenga predicciones de la producción de energía del proyecto solar
menu item
Verificación de datos de tierra
Verifique la calidad de las mediciones solares y meteorológicas
Evaluación de recursos solares y meteorología
Validación y evaluación detallada del recurso solar
Adaptación al sitio de modelos Solargis
Combinación de datos de satélite con mediciones de tierra
Control de calidad de mediciones solares y meteorológicas
Corrección de errores en los datos medidos en tierra
Datos GIS personalizados
Datos GIS de Solargis personalizados para sus aplicaciones
Evaluación de la producción de energía fotovoltaica
Estimación de incertidumbres de energía y datos de entrada relacionados
Evaluación del rendimiento fotovoltaico
Estimación de energía para refinanciación o adquisición de activos
Estudio de variabilidad fotovoltaica y optimización de almacenamiento
Comprensión de la variabilidad de la producción en amplias regiones geográficas
Estudio del potencial regional de energía solar
Identificación de ubicaciones para plantas de energía solar
Nuestra experiencia y conocimientos
Cómo funciona nuestra tecnología
Metodología
Cómo transformamos la ciencia en tecnología
API e integración
Cómo integrar los datos de Solargis mediante API
Guías de productos y documentación
Notas de la versión
Casos de éxito
Blog
Ebooks
Seminarios web
Publicaciones
Eventos
Mapas y datos GIS gratuitos
Mapas de rendimiento solar
Acerca de Solargis
Socios
Certificación ISO
Empleo

Esta página aún no está traducida al español. Puede verla sólo en inglés.

The study summarizes the results of comparing the data provided by various institutional or commercial providers of solar irradiance models against ground measurements collected at 129 sites distributed globally. It helps solar developers navigate through all the available databases.

DNI and GHI benchmark at 129 globally-distributed sites

As a result of a new collaborative effort of international experts in the field of solar energy, International Energy Agency (IEA) has recently released the report titled “Worldwide Benchmark of Modeled Solar Irradiance Data 2023”. This work was done under one of the IEA’s tasks in the PV Power Systems Programme. Specifically, under Task no. 16 with the title “Solar Resource for High Penetration and Large-Scale Applications”.

The report presents a benchmark of model-derived direct normal irradiance (DNI) as well as global horizontal irradiance (GHI) data at the sites of 129 globally distributed ground-based radiation measurement stations. 

Locations of reference stations used in the IEA study

Locations of reference stations used in the study and number of modeled data sets that are tested at every site.

The contribution of irradiance models to the solar industry

The development of accurate solar irradiance models plays a vital role in designing, financing, and operating solar power assets.

Their ability to provide sub-hourly datasets of many years allows solar developers to make valuable studies of their future assets. Besides, the capacity to keep the models up to date provides solar operators and asset managers a reliable reference for their performance assessments at hand.

Most solar models evaluated in the IEA study use inputs from geostationary satellite images (Meteosat Second Generation) as the main data source. Some modeled data sets use imagery from more than one satellite to reach global coverage, whereas other data sets only evaluate a part of the satellite field of view.

Models that use different methodologies are also included in the report. This is the case of one model based on Numerical Weather Data Prediction reanalysis (NWP) and another one based on imagery from polar satellites. 

How satellite models characterize solar irradiance journey until reaching the ground surface v6

Scheme showing how satellite models characterize solar irradiance journey until reaching the ground surface.

Estimating surface solar irradiance from satellites: Past, present, and future perspectives - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Simplified-relations-between-satellite-observations-and-SSI-according-to-one-dimensional_fig1_335319601 [accessed 21 Jul, 2023]

The importance of ground-measured data quality control 

The IEA study looked at 129 ground stations. These were selected after discarding several stations that were not fulfilling the data quality requirements from an initial set of 161 sites.

The study underlined the importance of the reference data quality. One of the conclusions was confirming that “without a stringent quality control procedure, no real validation can be done, with the risk of obtaining invalid results”.

The applied tests are related to several aspects and have several automated tests for missing timestamps, missing values, K-Tests, closure tests,  extremely rare limits tests, physically possible limits tests, and tracker-off tests.

The quality control included visual inspections as well, covering aspects such as shading assessment, closure test, AM/PM symmetry check for GHI, and calibration check using the clear-sky index.

QC tests used to evaluate the quality of irradiance data v4

Visualization of various QC tests used to evaluate the quality of irradiance data at one station (Visby, Sweden, 2016). 

Model datasets performance results

The benchmark results show “noticeable deviations in performance between the various modeled data sets” that were evaluated. 

In particular, deviation metrics of data sets based mainly on geostationary satellite imagery are closer to each other than to the NWP-based and polar satellite-based data sets. Specifically, the report mentions that “lowest average deviation metrics are often achieved by a single data set (Solargis)”.

A set of complete performance metrics were calculated, including rMBD, of paramount interest for the analysis as it is directly related to the overall under- or over-estimation.

Besides rMBD, the study also calculated the Combined Performance Index (CPI), which combines several aspects of the model performance into one index. This includes the magnitude of deviations between modeled and ground-measured data (described with rRMSD), the similarity of data distributions (described with rKSI) and the relative frequency of exceedance situations (described with rOVER). 

A small rCPI indicates good performance of the test data set.

IEA's Task 16 future work planned

Future work for the IEA Task 16 should include updates of this benchmark study, including sites over regions that are so far not covered well or at all.

It will also involve new modeled data sets and updated versions of the current data sets. In addition, the participants of this Task are planning further analysis to evaluate the expected positive impact of various post-processing methods on the modeled data (known as “site adaptation”).

All these activities will provide valuable insights for the solar energy industry and keep strengthening collaboration among members of this Task. Its ultimate goal is to lower planning and investment costs for PV  power systems by enhancing the quality of the resource assessments and solar forecast.


If you want to learn more about Solargis solar data validation, see our documentation.

Keep reading

Precipitable Water (PWAT) - new data parameter
Solargis news

Precipitable Water (PWAT) - new data parameter

Precipitable water or ‘PWAT’ in short, is the depth of water in a column of the atmosphere if all the water in that column were precipitated as rain.

Training in Beijing: sharing our knowledge with chinese professionals and the public
Solargis news

Training in Beijing: sharing our knowledge with chinese professionals and the public

We shared our knowledge with professionals in the solar energy industry in China during Assessment of solar resource measurement technology exchange event.

Further European solar records to follow in 2020
Solargis news

Further European solar records to follow in 2020

High April solar resource levels in the UK and Germany drive new production records, while new capacity helps Spain hit record production despite below average resource in March