Produkty
menu item
Prospect
Odhadnite solárny potenciál vašej lokality
menu item
Evaluate
Time Series a TMY dáta pre optimálny dizajn elektrárne
menu item
Monitor
Hodnotenie fotovoltického výstupu v reálnom čase
menu item
Forecast
Predpoveď výroby solárnej energie na až 14 dní
menu item
Analyst
Spravujte všetky solárne dáta na jednom mieste
menu item
Integrácie
Automatizujte dodávku Solargis dát
Príklady použitia
menu item
Výber lokality
Nájdite správnu lokalitu pre váš solárny projekt
menu item
Simulácia energetického výnosu
Analyzujte potenciálne zisky a riziká
menu item
Optimalizácia návrhu elektrárne
Nájdite optimálny dizajn pre vašu solárnu elektráreň
menu item
Skutočný výkon elektrárne
Poznajte skutočný výnos vašej elektrárne
menu item
Predpoveď výkonu
Predpovedajte výnos z vášho solárneho projektu
menu item
Overenie pozemných dát
Overte si kvalitu solárnych a meteo meraní
Hodnotenie solárneho zdroja a meteorologických dát
Detailné hodnotenie a validácia solárneho zdroja
Prispôsobenie modelov Solargis lokalite
Kombinácia satelitných dát s lokálnymi meraniami
Kontrola kvality solárnych a meteorologických meraní
Oprava chýb v dátach z pozemných meraní
GIS dáta na mieru
Solargis GIS dáta prispôsobené pre vaše aplikácie
Posúdenie energetického výnosu z fotovoltiky
Odhadnite neistotu vstupných dát
Hodnotenie výkonu fotovoltiky
Odhad energie pre refinancovanie alebo akvizíciu
Štúdia PV variability a optimalizácie skladovania energie
Pochopte variabilitu výstupu naprieč regiónmi
Regionálna štúdia potenciálu solárnej energie
Identifikácia lokalít pre solárne elektrárne
Naša expertíza
Ako naša technológia funguje?
Metodológia
Ako preklápame vedu do technológie?
API & integrácia
Ako integrovať Solargis dáta cez API
Príručky a dokumentácia
Release notes
Príbehy klientov
Blog
Ebooky
Webináre
Publikácie
Udalosti
Bezplatné mapy a GIS dáta
Mapy solárneho výkonu
O spoločnosti Solargis
Partneri
ISO certifikáty
Kariéra

Táto stránka zatiaľ nie je preložená do slovenčiny. Pozrieť si ju môžete v angličtine.

Applications of ground measurements for solar resource assessment

Solar resource historical database provides a unique resource for elaborated climate statistics that can help understand solar energy resource for any particular site. In most places, where there is no availability of ground stations next to the project site, Solargis satellite-based model provides a consistent, cost effective and gap-free multi-year data period that can be used for solar resource assessment.

On the other hand, weather parameters retrieved from satellite-based meteorological models have lower spatial and temporal resolution compared to on-site meteorological measurements. Therefore modelled parameters may characterize certain climate patterns at the surrounding area level rather than showing very local microclimate conditions.

As a standard practice, a meteorological station is deployed at a site of large solar energy project development. Deployment of solar measuring stations in a country has the strategic advantage of adapting and validating the radiation model at regional level to provide high-quality data and information for decision-makers and investors.

Running a ground-monitoring campaign and combining measurements with satellite data is the way to maintain low uncertainty of solar resource at a project site in the long term:

  • During the planning phase, the main objective of measuring data at the project site is to record accurate local meteorological characteristics and use them in the adaptation of the satellite-based model to reduce uncertainty of the long-term time series and aggregated estimates.
  • During the plant’s operation phase, on-site measuring is relevant for accurately measuring plant’s performance and detection of failures. Here satellite time series should be used as an independent source of information for quality control and optimization of ground-measured data.

Site-adaptation methods of satellite-based data

The data correlation is effective for mitigating systematic problems in the satellite-derived data (e.g. under/over-estimation of local aerosol loads) especially when the magnitude of the deviation is invariant over the time or has a seasonal periodicity. The accuracy-enhancement methods are capable to adapt satellite-derived DNI and GHI datasets (and derived parameters) to the local climate conditions that cannot be recorded in the original satellite and atmospheric inputs.

Satellite-based Solargis data can be adapted to the project site when at least 12 months of ground-measurements are available. The result of this process is the construction of a multi-year solar dataset with improved accuracy.

For the adaptation of satellite data to the conditions represented by the ground measurements at the project site, two main approaches are taken:

  • Adaptation of satellite-based GHI and DNI values. Using this method the bias (systematic deviation) is corrected together with fitting the cumulative distribution functions.
  • Adaptation of the input parameters and data used in the solar radiation model. More complex parameters, such as Aerosol Optical Depth and/or Cloud Index are adjusted using this approach.

As developers of the full computational chain, in Solargis we have the capacity of adapting the model input data, so both methods can be combined for achieving consistent and accurate results. Other methods only using a statistical approach will achieve not so good results on accuracy.

The adaptation of Solargis input parameters are used for correcting the main sources of discrepancies (such as limitations in aerosol description). Small residual deviations are removed in the next step by a simpler adaptation of the output values. Using this combined method for site-adaptation of satellite data, we are able to keep consistency of GHI, DNI and DIF components.

The data adaptation is important especially when specific situations such as extreme irradiance events are to be correctly represented in the enhanced dataset. These methods have to be used carefully, as inappropriate use for non-systematic deviations or use of less accurate ground data leads to accuracy degradation of the primary satellite-derived dataset.

Quality control of ground-measurement campaigns

A detailed data cleaning and quality control is always required as a first step when running site-adaptation. This process is based on SERI QC, BSRN and other in-house developed approaches. Time aggregation, harmonization and qualification are also required for next steps.

The ability to perform site-adaptation of satellite data is determined by several factors:

  • Quality of sensors. It is recommended to use best category meteorological instruments for measuring GHI (secondary standard pyranometers and first class pyrheliometers). As a substitute to pyrheliometer RSR (Rotating Shadowband Radiometer) can be used, however uncertainty of measured GHI and DNI is higher. Use of redundant instruments (optimally one for each components: GHI, DIF and DNI) increases accuracy and reliability of the whole process.
  • Quality of measurements. This is determined by regular maintenance, cleaning and calibration. A set of Quality Control routines, both automatic and managed by an operator, are to be evaluated. Only data which are pre-qualified may be used for site adaptation.
  • Adequate length of ground measurements. Optimally, high-quality ground measurements should be available for a period of optimally 12 months. In case of a tight time schedule, a shorter period (9+ months) may be considered for the purpose of site-adaptation. However such data may not be capable to cover all seasonal deviations. Data covering a shorter period (e.g. 3-6 months) may provide a false indication of the relationship between long-term historical Solargis data and local measured information.