产品
menu item
Prospect
光伏站点太阳能潜力快速评估
menu item
Evaluate
时间序列与TMY数据用于能源建模
menu item
Monitor
实时光伏输出评估
menu item
Forecast
长达14天的太阳能输出预测
menu item
Analyst
简化统一的太阳能数据管理
menu item
集成
自动交付Solargis数据
使用案例
menu item
选址
寻找合适的太阳能项目位置
menu item
能量产出模拟
分析潜在的收益和风险
menu item
优化电厂设计
寻找最佳电厂设计
menu item
实际电厂性能
探索真实产出
menu item
电力输出预测
预测太阳能项目能量产出
menu item
地面数据验证
验证太阳能与气象测量数据质量
太阳能资源与气象评估
详细的太阳能资源验证与评估
Solargis模型应用于场地适应性调整
结合卫星数据与现场测量数据
太阳能与气象测量质量控制
修正地面测量数据中的错误
定制GIS数据服务
用定制的Solargis GIS数据
光伏能量产出评估
能量估算的不确定性和相关数据输入
光伏性能评估
再融资或资产收购的能量估算
光伏变动性与储能优化研究
理解广泛地理区域内的产出变化
区域太阳能潜力研究
太阳能电厂场地识别
我们的专业领域
我们技术的运作方式
研究方法
我们如何将科学转化为技术
API与系统集成
如何通过API集成Solargis数据
产品指南与文档
发布通知
成功案例
博客
电子书
网络研讨会
出版物
活动
免费地图与GIS数据
太阳能性能地图
关于Solargis
合作伙伴
ISO证书
人才招聘

本页未翻译。您正在浏览的是英文版本。

Applications of ground measurements for solar resource assessment

Solar resource historical database provides a unique resource for elaborated climate statistics that can help understand solar energy resource for any particular site. In most places, where there is no availability of ground stations next to the project site, Solargis satellite-based model provides a consistent, cost effective and gap-free multi-year data period that can be used for solar resource assessment.

On the other hand, weather parameters retrieved from satellite-based meteorological models have lower spatial and temporal resolution compared to on-site meteorological measurements. Therefore modelled parameters may characterize certain climate patterns at the surrounding area level rather than showing very local microclimate conditions.

As a standard practice, a meteorological station is deployed at a site of large solar energy project development. Deployment of solar measuring stations in a country has the strategic advantage of adapting and validating the radiation model at regional level to provide high-quality data and information for decision-makers and investors.

Running a ground-monitoring campaign and combining measurements with satellite data is the way to maintain low uncertainty of solar resource at a project site in the long term:

  • During the planning phase, the main objective of measuring data at the project site is to record accurate local meteorological characteristics and use them in the adaptation of the satellite-based model to reduce uncertainty of the long-term time series and aggregated estimates.
  • During the plant’s operation phase, on-site measuring is relevant for accurately measuring plant’s performance and detection of failures. Here satellite time series should be used as an independent source of information for quality control and optimization of ground-measured data.

Site-adaptation methods of satellite-based data

The data correlation is effective for mitigating systematic problems in the satellite-derived data (e.g. under/over-estimation of local aerosol loads) especially when the magnitude of the deviation is invariant over the time or has a seasonal periodicity. The accuracy-enhancement methods are capable to adapt satellite-derived DNI and GHI datasets (and derived parameters) to the local climate conditions that cannot be recorded in the original satellite and atmospheric inputs.

Satellite-based Solargis data can be adapted to the project site when at least 12 months of ground-measurements are available. The result of this process is the construction of a multi-year solar dataset with improved accuracy.

For the adaptation of satellite data to the conditions represented by the ground measurements at the project site, two main approaches are taken:

  • Adaptation of satellite-based GHI and DNI values. Using this method the bias (systematic deviation) is corrected together with fitting the cumulative distribution functions.
  • Adaptation of the input parameters and data used in the solar radiation model. More complex parameters, such as Aerosol Optical Depth and/or Cloud Index are adjusted using this approach.

As developers of the full computational chain, in Solargis we have the capacity of adapting the model input data, so both methods can be combined for achieving consistent and accurate results. Other methods only using a statistical approach will achieve not so good results on accuracy.

The adaptation of Solargis input parameters are used for correcting the main sources of discrepancies (such as limitations in aerosol description). Small residual deviations are removed in the next step by a simpler adaptation of the output values. Using this combined method for site-adaptation of satellite data, we are able to keep consistency of GHI, DNI and DIF components.

The data adaptation is important especially when specific situations such as extreme irradiance events are to be correctly represented in the enhanced dataset. These methods have to be used carefully, as inappropriate use for non-systematic deviations or use of less accurate ground data leads to accuracy degradation of the primary satellite-derived dataset.

Quality control of ground-measurement campaigns

A detailed data cleaning and quality control is always required as a first step when running site-adaptation. This process is based on SERI QC, BSRN and other in-house developed approaches. Time aggregation, harmonization and qualification are also required for next steps.

The ability to perform site-adaptation of satellite data is determined by several factors:

  • Quality of sensors. It is recommended to use best category meteorological instruments for measuring GHI (secondary standard pyranometers and first class pyrheliometers). As a substitute to pyrheliometer RSR (Rotating Shadowband Radiometer) can be used, however uncertainty of measured GHI and DNI is higher. Use of redundant instruments (optimally one for each components: GHI, DIF and DNI) increases accuracy and reliability of the whole process.
  • Quality of measurements. This is determined by regular maintenance, cleaning and calibration. A set of Quality Control routines, both automatic and managed by an operator, are to be evaluated. Only data which are pre-qualified may be used for site adaptation.
  • Adequate length of ground measurements. Optimally, high-quality ground measurements should be available for a period of optimally 12 months. In case of a tight time schedule, a shorter period (9+ months) may be considered for the purpose of site-adaptation. However such data may not be capable to cover all seasonal deviations. Data covering a shorter period (e.g. 3-6 months) may provide a false indication of the relationship between long-term historical Solargis data and local measured information.