Productos
menu item
Prospect
Estimación rápida del potencial solar del emplazamiento fotovoltaico
menu item
Evaluate
Series temporales y datos TMY para modelización energética
menu item
Monitor
Evaluación de la producción fotovoltaica en tiempo real
menu item
Forecast
Previsión de la producción de energía solar para hasta 14 días
menu item
Analyst
Gestión de datos solares simplificada y unificada
menu item
Integraciones
Automatice la entrega de datos Solargis
Casos de uso
menu item
Selección de emplazamientos
Encuentre la ubicación adecuada para su proyecto solar
menu item
Simulación de la producción de energía
Analice los beneficios y riesgos potenciales
menu item
Optimización del diseño de plantas de generación eléctrica
Encuentre el diseño óptimo de la central eléctrica
menu item
Rendimiento real de plantas de generación eléctrica
Conozca la verdadera producción eléctrica
menu item
Predicción de generación
Obtenga predicciones de la producción de energía del proyecto solar
menu item
Verificación de datos de tierra
Verifique la calidad de las mediciones solares y meteorológicas
Evaluación de recursos solares y meteorología
Validación y evaluación detallada del recurso solar
Adaptación al sitio de modelos Solargis
Combinación de datos de satélite con mediciones de tierra
Control de calidad de mediciones solares y meteorológicas
Corrección de errores en los datos medidos en tierra
Datos GIS personalizados
Datos GIS de Solargis personalizados para sus aplicaciones
Evaluación de la producción de energía fotovoltaica
Estimación de incertidumbres de energía y datos de entrada relacionados
Evaluación del rendimiento fotovoltaico
Estimación de energía para refinanciación o adquisición de activos
Estudio de variabilidad fotovoltaica y optimización de almacenamiento
Comprensión de la variabilidad de la producción en amplias regiones geográficas
Estudio del potencial regional de energía solar
Identificación de ubicaciones para plantas de energía solar
Nuestra experiencia y conocimientos
Cómo funciona nuestra tecnología
Metodología
Cómo transformamos la ciencia en tecnología
API e integración
Cómo integrar los datos de Solargis mediante API
Guías de productos y documentación
Notas de la versión
Casos de éxito
Blog
Ebooks
Seminarios web
Publicaciones
Eventos
Mapas y datos GIS gratuitos
Mapas de rendimiento solar
Acerca de Solargis
Socios
Certificación ISO
Empleo

Esta página aún no está traducida al español. Puede verla sólo en inglés.

A PV yield simulation serves multiple purposes. It is essential for finding the most appropriate design and components for a project while providing confidence to those investing in building the project.

In the last decades of the 20th century, with the development of solar energy applications, energy simulations have traditionally run their calculations using summarized conditions described by the so-called Typical Meteorological Year datasets (TMY).

Currently, thanks to the relatively recent development of satellite-based modeling and easier access to computing capabilities and software tools, solar industry players can now test their power plant designs and financial plans against more realistic conditions described by multi-year Time Series (TS).

To what extent is it possible to characterize solar irradiance and meteorological conditions with the 8760 values stored in a TMY? Does it mean that popular TMY datasets are no longer useful?

In this article, we provide an overview of these two main datasets commonly used for yield assessments and give recommendations on when to use each of them.

A short description of how TMY is made from TS

The TMY P50 is constructed by selecting the most representative months from the available time series (i.e. the most typical January, February, March, etc.), which are then concatenated into one artificial and representative single year.

In Solargis TMY, the selection of representative months is done through an iterative process based on two main criteria: firstly, achieving minimal differences between the statistical characteristics of the Typical Meteorological Year (TMY) and the actual time series; and secondly, ensuring maximum similarity between the monthly Cumulative Distribution Functions (CDF) of the TMY and the time series, to accurately represent typical values for each selected month.

The difference in relevance of each parameter when selecting the typical months is addressed by assigning weights to the parameters included in the dataset. Besides solar irradiance and temperature, other meteorological parameters are also included in the dataset, but typically these are secondary parameters with less relevance in the analysis and thus do not influence the choice of the representative month.

It is also important to know that different weighting can be used depending on the type of solar energy applications under consideration. For example, a TMY made for building performance simulation could not be the same as one made for thermosolar applications, which in turn could differ from TMYs made for PV simulation software. Therefore, when comparing TMY datasets we always recommend to note how TMY is constructed and what it is made for.

TMY TS Temperature

 Figure 1. Representation of monthly temperature data included respectively in TMY (chart on the left, reference year set to 1900 by convention) and Time Series (chart on the right, data period covering complete years since 1994).

 

Data loss

Essentially, TMY is an attempt to summarize variable conditions into a single year with hourly granularity. This results in lighter files that are easy to handle, but as a consequence, a lot of valuable information is lost.
During the conversion, this data loss occurs in two ways. First, long periods are discarded in the process. Second, the data aggregation of sub-hourly values into hourly hides aspects of resource variability that can be useful to look at.

Besides, since each site may result in a different set of selected months, the TMY algorithm makes it difficult to compare sites. This lack of spatial continuity also makes TMY unsuitable for regional analysis or for adjusting data using nearby ground measurements (site adaptation).

TMY TS Conversion

Figure 2. Graphical representation of the conversion process of TMY from TS

 

When TMY is still useful

Regardless of the data discarded during its construction process, Typical Meteorological Year (TMY) datasets can still be useful for making quick comparisons at the early stages of a solar energy project when site prospection or pre-feasibility analysis is usually required.

Handling light datasets has an effect on data services, making API calls faster. That can be particularly useful for applications where multiple sites need to be checked in a short period of time.

TMY TS Averages

Figure 3. Typical Meteorological Year monthly values are the monthly averages

 

When to definitely use Time Series

Since it represents typical conditions rather than extreme ones, TMY is less suitable after the initial preliminary stages of project development. That is exactly when Time Series can be useful, for instance, when designing systems to withstand the most adverse conditions that might occur at a specific location. When conducting financial studies, Time Series are recommended to anticipate years with lower (or higher) returns.

In general, when a more detailed site characterization is required, Time Series should be used. This includes the case of variability analysis at different levels: interannual, monthly, or sub-hourly.

In practice, when the simulator’s data handling capacity is limited, we can consider Time Series as the “raw material” to create secondary data products if needed. That means that if someone still wants to use “chunks” of a one-year period for energy simulations, they can easily be extracted from the original Time Series and identify those that were particularly extreme in terms of highest or lowest solar irradiance (or any other meteorological parameter with influence in PV system design and performance).

TMY TS Max Min

Figure 4. Time series monthly values provide minimum and maximum monthly values besides monthly averages

 

TMY TS profiles

Figure 5. Time series allows the calculation of other statistics e.g. P90, P99, etc.

 

Conclusions

While TMY datasets could still be useful when fast comparisons are required (usually at the first stages of the project), Time Series datasets are required for doing a technical and financial analysis of a PV power plant.
The most relevant differences between both datasets are summarized in the tables below.

 

TMY TS features

Figure 6. Comparison of Time Series and TMY data features

 

TMY TS applications

 Figure 7. Comparison of Time Series and TMY data applications 

 

Download sample Time Series here (CSV) and sample TMY file here (CSV).

Keep reading

Why to use satellite-based solar resource data in PV performance assessment
Best practices

Why to use satellite-based solar resource data in PV performance assessment

It is widely accepted that high-standard pyranometers operated under rigorously controlled conditions are to be used for bankable performance assessment of photovoltaic (PV) power systems.

How Solargis is improving accuracy of solar power forecasts
Best practices

How Solargis is improving accuracy of solar power forecasts

Just as there are horses for courses, different forecasting techniques are more suitable depending on the intended forecast lead time.

How to calculate P90 (or other Pxx) PV energy yield estimates
Best practices

How to calculate P90 (or other Pxx) PV energy yield estimates

To assess the solar resource or energy yield potential of a site, we model the solar resource/energy yield using best available information and methods. The resulting estimate is the P50 estimate, or in other words, the “best estimate”. P50 is essentially a statistical level of confidence suggesting that we expect to exceed the predicted solar resource/energy yield 50% of the time. However, ...