Productos
menu item
Prospect
Estimación rápida del potencial solar del emplazamiento fotovoltaico
menu item
Evaluate
Series temporales y datos TMY para modelización energética
menu item
Monitor
Evaluación de la producción fotovoltaica en tiempo real
menu item
Forecast
Previsión de la producción de energía solar para hasta 14 días
menu item
Analyst
Gestión de datos solares simplificada y unificada
menu item
Integraciones
Automatice la entrega de datos Solargis
Casos de uso
menu item
Selección de emplazamientos
Encuentre la ubicación adecuada para su proyecto solar
menu item
Simulación de la producción de energía
Analice los beneficios y riesgos potenciales
menu item
Optimización del diseño de plantas de generación eléctrica
Encuentre el diseño óptimo de la central eléctrica
menu item
Rendimiento real de plantas de generación eléctrica
Conozca la verdadera producción eléctrica
menu item
Predicción de generación
Obtenga predicciones de la producción de energía del proyecto solar
menu item
Verificación de datos de tierra
Verifique la calidad de las mediciones solares y meteorológicas
Evaluación de recursos solares y meteorología
Validación y evaluación detallada del recurso solar
Adaptación al sitio de modelos Solargis
Combinación de datos de satélite con mediciones de tierra
Control de calidad de mediciones solares y meteorológicas
Corrección de errores en los datos medidos en tierra
Datos GIS personalizados
Datos GIS de Solargis personalizados para sus aplicaciones
Evaluación de la producción de energía fotovoltaica
Estimación de incertidumbres de energía y datos de entrada relacionados
Evaluación del rendimiento fotovoltaico
Estimación de energía para refinanciación o adquisición de activos
Estudio de variabilidad fotovoltaica y optimización de almacenamiento
Comprensión de la variabilidad de la producción en amplias regiones geográficas
Estudio del potencial regional de energía solar
Identificación de ubicaciones para plantas de energía solar
Nuestra experiencia y conocimientos
Cómo funciona nuestra tecnología
Metodología
Cómo transformamos la ciencia en tecnología
API e integración
Cómo integrar los datos de Solargis mediante API
Guías de productos y documentación
Notas de la versión
Casos de éxito
Blog
Ebooks
Seminarios web
Publicaciones
Eventos
Mapas y datos GIS gratuitos
Mapas de rendimiento solar
Acerca de Solargis
Socios
Certificación ISO
Empleo

Esta página aún no está traducida al español. Puede verla sólo en inglés.

From the solar energy modeling perspective, a solar eclipse causes a temporary drop in the irradiance for those areas where the sun and moon cast shadows on their journey through space.

On the occasion of the most recent total solar eclipse from April 8th, 2024, read how solar irradiance modeling works and how to identify solar eclipse events on solar energy datasets.

Solargis GHI 20240408

Figure 1: Global Horizontal Irradiance (GHI) map and GHI time series for three selected locations during the eclipse.

Solar eclipse shadow and clouds

An eclipse event occurs approximately every 18 months somewhere on the planet. Depending on whether the eclipse is seen as partial, total, or annular, the effect on daily irradiance profiles will be of different intensity.

It's likely that under cloud situations, the effect of a solar eclipse in the irradiance datasets is superposed with the effect of clouds, making it difficult to detect it from daily profiles of Global Horizontal and Direct Normal Irradiances (GHI and DNI).

full area satellite

Figure 2: Visible satellite imagery provided by GOES satellite during the eclipse.

However, we can observe something in all locations: a sudden but smooth drop in the clear-sky irradiance profile on both clear-sky Global Horizontal and clear-sky Direct Normal Irradiances (GHIc and DNIc).

We can notice this particular shape even better in locations where the eclipse happened during central hours and was seen as a total eclipse (or at least a significant part of the sun was covered).

dallas c highlighted

Figure 3: Drop of clear-sky values on clear-sky GHI and DNI during a total solar eclipse. Sample for a location in Dallas, Texas.

Understanding clear-sky irradiance

Clear-sky irradiance represents the solar irradiance available at the Earth’s surface for the considered location and period if we assume that no cloud would cover the sky. In other words, clear-sky irradiance represents the theoretical maximum value on which the satellite-derived cloud attenuation signal is superimposed.

Clear-sky irradiance depends on several factors.

Firstly, it depends on the Earth-Sun distance and the Sun's position in the sky. Once this is calculated, the solar irradiance model adds the effect of solar irradiance being scattered and absorbed when crossing the atmosphere. For that, we use inputs like elevation above sea level and the composition of atmospheric gases, especially water vapor and ozone content.

Another important factor accounted for in clear-sky irradiance is the atmospheric aerosol content.

These tiny particles typically come from dust storms, industrial emissions, and other events like wildfires and volcanoes. They are transported in the air following specific patterns, which are also modeled and incorporated into the clear-sky irradiance computation chain.

durango

dallas

belleville

Figure 4: Graphs showing GHI and DNI daily profiles of 7th, 8th, and 9th April, respectively, for Durango (Mexico), Dallas (USA), and Belleville (Canada).

durango c

dallas c

belleville c

Figure 5: Graphs showing GHIc and DNIc daily profiles for 7th, 8th, and 9th April, respectively, for Durango (Mexico), Dallas (USA), and Belleville (Canada).

Next solar eclipse

The next solar eclipse (this time of an annular type) will be on October 2nd, 2024. It will be seen from areas in the Pacific Ocean and the very Southern part of South America.

Understanding the nuances of eclipses, aerosols, and clouds is essential for stakeholders in the solar energy sector worldwide to optimize solar energy usage. Solar irradiance modeling synthesizes meteorological knowledge, computational modeling, and remote sensing techniques to help with this.

Keep reading

Why to use satellite-based solar resource data in PV performance assessment
Best practices

Why to use satellite-based solar resource data in PV performance assessment

It is widely accepted that high-standard pyranometers operated under rigorously controlled conditions are to be used for bankable performance assessment of photovoltaic (PV) power systems.

How Solargis is improving accuracy of solar power forecasts
Best practices

How Solargis is improving accuracy of solar power forecasts

Just as there are horses for courses, different forecasting techniques are more suitable depending on the intended forecast lead time.

How to calculate P90 (or other Pxx) PV energy yield estimates
Best practices

How to calculate P90 (or other Pxx) PV energy yield estimates

To assess the solar resource or energy yield potential of a site, we model the solar resource/energy yield using best available information and methods. The resulting estimate is the P50 estimate, or in other words, the “best estimate”. P50 is essentially a statistical level of confidence suggesting that we expect to exceed the predicted solar resource/energy yield 50% of the time. However, ...