产品
menu item
Prospect
光伏站点太阳能潜力快速评估
menu item
Evaluate
时间序列与TMY数据用于能源建模
menu item
Monitor
实时光伏输出评估
menu item
Forecast
长达14天的太阳能输出预测
menu item
Analyst
简化统一的太阳能数据管理
menu item
集成
自动交付Solargis数据
使用案例
menu item
选址
寻找合适的太阳能项目位置
menu item
能量产出模拟
分析潜在的收益和风险
menu item
优化电厂设计
寻找最佳电厂设计
menu item
实际电厂性能
探索真实产出
menu item
电力输出预测
预测太阳能项目能量产出
menu item
地面数据验证
验证太阳能与气象测量数据质量
太阳能资源与气象评估
详细的太阳能资源验证与评估
Solargis模型应用于场地适应性调整
结合卫星数据与现场测量数据
太阳能与气象测量质量控制
修正地面测量数据中的错误
定制GIS数据服务
用定制的Solargis GIS数据
光伏能量产出评估
能量估算的不确定性和相关数据输入
光伏性能评估
再融资或资产收购的能量估算
光伏变动性与储能优化研究
理解广泛地理区域内的产出变化
区域太阳能潜力研究
太阳能电厂场地识别
我们的专业领域
我们技术的运作方式
研究方法
我们如何将科学转化为技术
API与系统集成
如何通过API集成Solargis数据
产品指南与文档
发布通知
成功案例
博客
电子书
网络研讨会
出版物
活动
免费地图与GIS数据
太阳能性能地图
关于Solargis
合作伙伴
ISO证书
人才招聘

本页未翻译。您正在浏览的是英文版本。

From the solar energy modeling perspective, a solar eclipse causes a temporary drop in the irradiance for those areas where the sun and moon cast shadows on their journey through space.

On the occasion of the most recent total solar eclipse from April 8th, 2024, read how solar irradiance modeling works and how to identify solar eclipse events on solar energy datasets.

Solargis GHI 20240408

Figure 1: Global Horizontal Irradiance (GHI) map and GHI time series for three selected locations during the eclipse.

Solar eclipse shadow and clouds

An eclipse event occurs approximately every 18 months somewhere on the planet. Depending on whether the eclipse is seen as partial, total, or annular, the effect on daily irradiance profiles will be of different intensity.

It's likely that under cloud situations, the effect of a solar eclipse in the irradiance datasets is superposed with the effect of clouds, making it difficult to detect it from daily profiles of Global Horizontal and Direct Normal Irradiances (GHI and DNI).

full area satellite

Figure 2: Visible satellite imagery provided by GOES satellite during the eclipse.

However, we can observe something in all locations: a sudden but smooth drop in the clear-sky irradiance profile on both clear-sky Global Horizontal and clear-sky Direct Normal Irradiances (GHIc and DNIc).

We can notice this particular shape even better in locations where the eclipse happened during central hours and was seen as a total eclipse (or at least a significant part of the sun was covered).

dallas c highlighted

Figure 3: Drop of clear-sky values on clear-sky GHI and DNI during a total solar eclipse. Sample for a location in Dallas, Texas.

Understanding clear-sky irradiance

Clear-sky irradiance represents the solar irradiance available at the Earth’s surface for the considered location and period if we assume that no cloud would cover the sky. In other words, clear-sky irradiance represents the theoretical maximum value on which the satellite-derived cloud attenuation signal is superimposed.

Clear-sky irradiance depends on several factors.

Firstly, it depends on the Earth-Sun distance and the Sun's position in the sky. Once this is calculated, the solar irradiance model adds the effect of solar irradiance being scattered and absorbed when crossing the atmosphere. For that, we use inputs like elevation above sea level and the composition of atmospheric gases, especially water vapor and ozone content.

Another important factor accounted for in clear-sky irradiance is the atmospheric aerosol content.

These tiny particles typically come from dust storms, industrial emissions, and other events like wildfires and volcanoes. They are transported in the air following specific patterns, which are also modeled and incorporated into the clear-sky irradiance computation chain.

durango

dallas

belleville

Figure 4: Graphs showing GHI and DNI daily profiles of 7th, 8th, and 9th April, respectively, for Durango (Mexico), Dallas (USA), and Belleville (Canada).

durango c

dallas c

belleville c

Figure 5: Graphs showing GHIc and DNIc daily profiles for 7th, 8th, and 9th April, respectively, for Durango (Mexico), Dallas (USA), and Belleville (Canada).

Next solar eclipse

The next solar eclipse (this time of an annular type) will be on October 2nd, 2024. It will be seen from areas in the Pacific Ocean and the very Southern part of South America.

Understanding the nuances of eclipses, aerosols, and clouds is essential for stakeholders in the solar energy sector worldwide to optimize solar energy usage. Solar irradiance modeling synthesizes meteorological knowledge, computational modeling, and remote sensing techniques to help with this.

Keep reading

Why to use satellite-based solar resource data in PV performance assessment
Best practices

Why to use satellite-based solar resource data in PV performance assessment

It is widely accepted that high-standard pyranometers operated under rigorously controlled conditions are to be used for bankable performance assessment of photovoltaic (PV) power systems.

How Solargis is improving accuracy of solar power forecasts
Best practices

How Solargis is improving accuracy of solar power forecasts

Just as there are horses for courses, different forecasting techniques are more suitable depending on the intended forecast lead time.

How to calculate P90 (or other Pxx) PV energy yield estimates
Best practices

How to calculate P90 (or other Pxx) PV energy yield estimates

To assess the solar resource or energy yield potential of a site, we model the solar resource/energy yield using best available information and methods. The resulting estimate is the P50 estimate, or in other words, the “best estimate”. P50 is essentially a statistical level of confidence suggesting that we expect to exceed the predicted solar resource/energy yield 50% of the time. However, ...