产品
menu item
Prospect
光伏站点太阳能潜力快速评估
menu item
Evaluate
时间序列与TMY数据用于能源建模
menu item
Monitor
实时光伏输出评估
menu item
Forecast
长达14天的太阳能输出预测
menu item
Analyst
简化统一的太阳能数据管理
menu item
集成
自动交付Solargis数据
使用案例
menu item
选址
寻找合适的太阳能项目位置
menu item
能量产出模拟
分析潜在的收益和风险
menu item
优化电厂设计
寻找最佳电厂设计
menu item
实际电厂性能
探索真实产出
menu item
电力输出预测
预测太阳能项目能量产出
menu item
地面数据验证
验证太阳能与气象测量数据质量
太阳能资源与气象评估
详细的太阳能资源验证与评估
Solargis模型应用于场地适应性调整
结合卫星数据与现场测量数据
太阳能与气象测量质量控制
修正地面测量数据中的错误
定制GIS数据服务
用定制的Solargis GIS数据
光伏能量产出评估
能量估算的不确定性和相关数据输入
光伏性能评估
再融资或资产收购的能量估算
光伏变动性与储能优化研究
理解广泛地理区域内的产出变化
区域太阳能潜力研究
太阳能电厂场地识别
我们的专业领域
我们技术的运作方式
研究方法
我们如何将科学转化为技术
API与系统集成
如何通过API集成Solargis数据
产品指南与文档
发布通知
成功案例
博客
电子书
网络研讨会
出版物
活动
免费地图与GIS数据
太阳能性能地图
关于Solargis
合作伙伴
ISO证书
人才招聘

本页未翻译。您正在浏览的是英文版本。

It is widely accepted that high-standard pyranometers operated under rigorously controlled conditions are to be used for bankable performance assessment of photovoltaic (PV) power systems. Asset managers, O&M providers, and owners of PV portfolios are increasingly relying on satellite-derived solar resource data.

Have you ever had doubts about your Performance Ratio (PR) calculations because of gaps in solar data, unrealistic values, or simply because the information did not come from an independent source? Satellite-data provide benefits that help relieve worries.

1. It is beneficial to complement pyranometers by satellite data

Quality control of ground measured data

Maintaining systematic solar resource monitoring at high quality and without gaps is challenging, due to potential issues in data acquisition, storage and transmission. Data from ground-mounted sensors are prone to errors for reasons such as shading, misalignment of instruments, calibration issues, irregular or insufficient cleaning, etc. Use of satellite data allows for quality control, error detection and gap filling of ground measurements.

Independent verification

The satellite-based solar data make it possible to independently confirm validity of PR calculations based on ground measurements. As the satellite data come from an independent service provider, they can also be used for settling contractual arguments relating to doubts about measurements from pyranometers.

Save your time and money

Data supply from the satellite models is very stable and reliable. The satellite-based solar resource is cheap and redundant source of information, which enables implementation of advanced quality control and data analysis, and enables high level of automation.

Accuracy

Independent validation studies show that the Solargis satellite-based model has low uncertainty and stable performance. In many regions the accuracy of monthly and annual totals is comparable to that of data measured by well-maintained pyranometers. Correlating ground measured data and satellite-based model estimates helps reducing the uncertainty even more, and maintaining it in a longer term.

 

FIG. 1: UNCERTAINTY OF SOLARGIS GLOBAL HORIZONTAL IRRADIATION DATA VS. MEASUREMENTS FROM PYRANOMETERS. MODEL VALIDATION AT 190+ SITES, WORLDWIDE, SHOWS THAT ACCURACY OF GHI IS COMPARABLE TO PYRANOMETERS FOR MONTHLY AND ANNUAL SUMMARIES IN MOST REGIONS. EVEN LOWER DATA UNCERTAINTY CAN BE ACHIEVED BY CORRELATION OF SATELLITE AND GROUND-MEASURED 

2. Performance evaluation of residential and commercial projects

Installing and maintaining the pyranometers is relatively expensive and challenging. Therefore it is typically not an option for residential and small commercial PV projects. In a case of portfolio of smaller systems, use of satellite-derived solar resource is the only practical approach for performance evaluation.

3. Yearly variability of solar resource

It is often asked to what extent a particular month or year had received higher or lower solar radiation compared to the long-term average. Satellite-based modelled data are the most suitable for such an exercise as they record stable and map based historical archive of more than 16 years.

1426148540051

FIG. 2: LONG TERM AVERAGE OF YEARLY TOTAL OF GLOBAL HORIZONTAL IRRADIATION REPRESENTING YEARS 1999 TO 2014. SOURCE: SOLARGIS

 

2012 2013 2014 NA

FIG. 3: RELATIVE DIFFERENCE OF YEARLY TOTALS OF GLOBAL HORIZONTAL IRRADIATION IN YEARS 2012, 2013 AND 2014 COMPARED TO THE LONG-TERM AVERAGE (CALCULATED OVER A PERIOD 1999 TO 2014). SOURCE: SOLARGIS

 

Where to start?

Solargis pvSpot service is one of few options to receive solar resource and PV simulated data on a daily basis, for any location in North & Central America. In addition to solar resource, pvSpot supplies also the expected PV power simulation data. Register three PV systems of your choice at solargis.info/pvspot and receive free data, representing last 6 months, for your testing. For large portfolios the data are typically delivered via FTP or Web Service (programmable API).

 

Keep reading

WEBINAR: Solar resources data applications for utility planning and operations
Best practices

WEBINAR: Solar resources data applications for utility planning and operations

On Monday 23 Feb 2015 at 16:00 UTC, Marcel Suri (Solargis) and Tom Hoff (Clean Power Research) present the use of weather satellite data