Productos
menu item
Prospect
Estimación rápida del potencial solar del emplazamiento fotovoltaico
menu item
Evaluate
Series temporales y datos TMY para modelización energética
menu item
Monitor
Evaluación de la producción fotovoltaica en tiempo real
menu item
Forecast
Previsión de la producción de energía solar para hasta 14 días
menu item
Analyst
Gestión de datos solares simplificada y unificada
menu item
Integraciones
Automatice la entrega de datos Solargis
Casos de uso
menu item
Selección de emplazamientos
Encuentre la ubicación adecuada para su proyecto solar
menu item
Simulación de la producción de energía
Analice los beneficios y riesgos potenciales
menu item
Optimización del diseño de plantas de generación eléctrica
Encuentre el diseño óptimo de la central eléctrica
menu item
Rendimiento real de plantas de generación eléctrica
Conozca la verdadera producción eléctrica
menu item
Predicción de generación
Obtenga predicciones de la producción de energía del proyecto solar
menu item
Verificación de datos de tierra
Verifique la calidad de las mediciones solares y meteorológicas
Evaluación de recursos solares y meteorología
Validación y evaluación detallada del recurso solar
Adaptación al sitio de modelos Solargis
Combinación de datos de satélite con mediciones de tierra
Control de calidad de mediciones solares y meteorológicas
Corrección de errores en los datos medidos en tierra
Datos GIS personalizados
Datos GIS de Solargis personalizados para sus aplicaciones
Evaluación de la producción de energía fotovoltaica
Estimación de incertidumbres de energía y datos de entrada relacionados
Evaluación del rendimiento fotovoltaico
Estimación de energía para refinanciación o adquisición de activos
Estudio de variabilidad fotovoltaica y optimización de almacenamiento
Comprensión de la variabilidad de la producción en amplias regiones geográficas
Estudio del potencial regional de energía solar
Identificación de ubicaciones para plantas de energía solar
Nuestra experiencia y conocimientos
Cómo funciona nuestra tecnología
Metodología
Cómo transformamos la ciencia en tecnología
API e integración
Cómo integrar los datos de Solargis mediante API
Guías de productos y documentación
Notas de la versión
Casos de éxito
Blog
Ebooks
Seminarios web
Publicaciones
Eventos
Mapas y datos GIS gratuitos
Mapas de rendimiento solar
Acerca de Solargis
Socios
Certificación ISO
Empleo

Esta página aún no está traducida al español. Puede verla sólo en inglés.

As extreme weather events continue to break records globally, 2022 saw Spain experience its largest decline in solar irradiance in 28 years after its wettest March in 61 years and a Saharan dust cloud that swept across the Mediterranean.

At the end of spring, a team of experts at solar data firm Solargis analysed their monthly difference maps to find a 50% decrease in Spanish solar irradiance – the most extreme decrease since the beginning of their satellite-based records in 1994. Contrastingly, Germany and the Balkans saw around 45% higher levels of solar irradiance during the month of March when compared to longer term averages.

With Europe undergoing a rapid energy transition following the invasion of Ukraine, the case for clean energy has never been stronger. For the continent to best manage the inherent variability of renewables without relying on fossil fuels, there is a need for improved regional grids, as well as cross-continental infrastructure. It is therefore essential that regional variability is better managed across regions of Europe by improving grid quality and interconnection.

Solargis 202203 GHIdiff Europe

Differences with long-term averages in GHI values during March in Europe. Subscriptions to free monthly maps here.

 

Variable resources

With Spain one of Europe's sunniest countries and with Germany looking to triple its solar energy capacity to 215GW, these significant deviations from average values pose a challenge to project developers and investors seeking to accurately calculate return on investment and support integration of solar into the continent’s grid. This is particularly significant at a time when policymakers are determined to slash the EU’s Russian oil and gas dependence by increasing adoption of renewables.

It is a well-known fact that grid interconnection in Europe isn’t currently sufficient to accommodate the growth in renewables required to reach climate targets. Insufficient interconnection hampers the ability of neighbouring solar and wind rich regions to compensate for anomalous conditions in markets such as Spain during the recent winter period.

The need for investment in interconnection and forecasting

Improved grids spanning countries will enable regional utility companies to compensate for localised variability through clean energy sources rather than reverting to fossil fuels.

While modernisation of the grid faces significant challenges, we are seeing a clear push for a more coordinated energy approach, including the recently formed SERENDI-PV – a project financed by the European Commission to investigate the reliable and dispatchable integration of PV (photovoltaics) into EU grids.

As a specialist in understanding solar as a resource, Solargis works closely with others in the project to highlight the variability challenge in key markets to best support policymakers, planners and consultants, encouraging a coordinated approach to interconnection between countries across Europe.

Marcel Suri, CEO, Solargis, said: “While the power sources of our future require an innovative approach to grid interconnectivity, so too do they require increased digitalisation to support their integration. A new generation of forecasting models allows grid operators to maintain balance between variable and flexible energy sources through flexible trading and energy exchange. The digitalisation of our grids coupled with increased interconnectivity ultimately will allow larger generators to react faster and more efficiently to regional variability of renewables.”

"Controlling the weather is outside of our capabilities however, by looking at Europe as an interconnected, rather than country-specific, energy grid, there is the potential to balance out the market. Through our initiative with SERENDI-PV, we are working towards improving short-term forecasting of aggregated PV power, energy evaluation and forecasting in the presence of snow, dust and extreme weather, improving simulations, uncertainty reduction to support the creation of an effective, modern digitalised grid.”

Keep reading

Why to use satellite-based solar resource data in PV performance assessment
Best practices

Why to use satellite-based solar resource data in PV performance assessment

It is widely accepted that high-standard pyranometers operated under rigorously controlled conditions are to be used for bankable performance assessment of photovoltaic (PV) power systems.

How Solargis is improving accuracy of solar power forecasts
Best practices

How Solargis is improving accuracy of solar power forecasts

Just as there are horses for courses, different forecasting techniques are more suitable depending on the intended forecast lead time.

How to calculate P90 (or other Pxx) PV energy yield estimates
Best practices

How to calculate P90 (or other Pxx) PV energy yield estimates

To assess the solar resource or energy yield potential of a site, we model the solar resource/energy yield using best available information and methods. The resulting estimate is the P50 estimate, or in other words, the “best estimate”. P50 is essentially a statistical level of confidence suggesting that we expect to exceed the predicted solar resource/energy yield 50% of the time. However, ...