产品
menu item
Prospect
光伏站点太阳能潜力快速评估
menu item
Evaluate
时间序列与TMY数据用于能源建模
menu item
Monitor
实时光伏输出评估
menu item
Forecast
长达14天的太阳能输出预测
menu item
Analyst
简化统一的太阳能数据管理
menu item
集成
自动交付Solargis数据
使用案例
menu item
选址
寻找合适的太阳能项目位置
menu item
能量产出模拟
分析潜在的收益和风险
menu item
优化电厂设计
寻找最佳电厂设计
menu item
实际电厂性能
探索真实产出
menu item
电力输出预测
预测太阳能项目能量产出
menu item
地面数据验证
验证太阳能与气象测量数据质量
太阳能资源与气象评估
详细的太阳能资源验证与评估
Solargis模型应用于场地适应性调整
结合卫星数据与现场测量数据
太阳能与气象测量质量控制
修正地面测量数据中的错误
定制GIS数据服务
用定制的Solargis GIS数据
光伏能量产出评估
能量估算的不确定性和相关数据输入
光伏性能评估
再融资或资产收购的能量估算
光伏变动性与储能优化研究
理解广泛地理区域内的产出变化
区域太阳能潜力研究
太阳能电厂场地识别
我们的专业领域
我们技术的运作方式
研究方法
我们如何将科学转化为技术
API与系统集成
如何通过API集成Solargis数据
产品指南与文档
发布通知
成功案例
博客
电子书
网络研讨会
出版物
活动
免费地图与GIS数据
太阳能性能地图
关于Solargis
合作伙伴
ISO证书
人才招聘

本页未翻译。您正在浏览的是英文版本。

As extreme weather events continue to break records globally, 2022 saw Spain experience its largest decline in solar irradiance in 28 years after its wettest March in 61 years and a Saharan dust cloud that swept across the Mediterranean.

At the end of spring, a team of experts at solar data firm Solargis analysed their monthly difference maps to find a 50% decrease in Spanish solar irradiance – the most extreme decrease since the beginning of their satellite-based records in 1994. Contrastingly, Germany and the Balkans saw around 45% higher levels of solar irradiance during the month of March when compared to longer term averages.

With Europe undergoing a rapid energy transition following the invasion of Ukraine, the case for clean energy has never been stronger. For the continent to best manage the inherent variability of renewables without relying on fossil fuels, there is a need for improved regional grids, as well as cross-continental infrastructure. It is therefore essential that regional variability is better managed across regions of Europe by improving grid quality and interconnection.

Solargis 202203 GHIdiff Europe

Differences with long-term averages in GHI values during March in Europe. Subscriptions to free monthly maps here.

 

Variable resources

With Spain one of Europe's sunniest countries and with Germany looking to triple its solar energy capacity to 215GW, these significant deviations from average values pose a challenge to project developers and investors seeking to accurately calculate return on investment and support integration of solar into the continent’s grid. This is particularly significant at a time when policymakers are determined to slash the EU’s Russian oil and gas dependence by increasing adoption of renewables.

It is a well-known fact that grid interconnection in Europe isn’t currently sufficient to accommodate the growth in renewables required to reach climate targets. Insufficient interconnection hampers the ability of neighbouring solar and wind rich regions to compensate for anomalous conditions in markets such as Spain during the recent winter period.

The need for investment in interconnection and forecasting

Improved grids spanning countries will enable regional utility companies to compensate for localised variability through clean energy sources rather than reverting to fossil fuels.

While modernisation of the grid faces significant challenges, we are seeing a clear push for a more coordinated energy approach, including the recently formed SERENDI-PV – a project financed by the European Commission to investigate the reliable and dispatchable integration of PV (photovoltaics) into EU grids.

As a specialist in understanding solar as a resource, Solargis works closely with others in the project to highlight the variability challenge in key markets to best support policymakers, planners and consultants, encouraging a coordinated approach to interconnection between countries across Europe.

Marcel Suri, CEO, Solargis, said: “While the power sources of our future require an innovative approach to grid interconnectivity, so too do they require increased digitalisation to support their integration. A new generation of forecasting models allows grid operators to maintain balance between variable and flexible energy sources through flexible trading and energy exchange. The digitalisation of our grids coupled with increased interconnectivity ultimately will allow larger generators to react faster and more efficiently to regional variability of renewables.”

"Controlling the weather is outside of our capabilities however, by looking at Europe as an interconnected, rather than country-specific, energy grid, there is the potential to balance out the market. Through our initiative with SERENDI-PV, we are working towards improving short-term forecasting of aggregated PV power, energy evaluation and forecasting in the presence of snow, dust and extreme weather, improving simulations, uncertainty reduction to support the creation of an effective, modern digitalised grid.”

Keep reading

Why to use satellite-based solar resource data in PV performance assessment
Best practices

Why to use satellite-based solar resource data in PV performance assessment

It is widely accepted that high-standard pyranometers operated under rigorously controlled conditions are to be used for bankable performance assessment of photovoltaic (PV) power systems.

How Solargis is improving accuracy of solar power forecasts
Best practices

How Solargis is improving accuracy of solar power forecasts

Just as there are horses for courses, different forecasting techniques are more suitable depending on the intended forecast lead time.

How to calculate P90 (or other Pxx) PV energy yield estimates
Best practices

How to calculate P90 (or other Pxx) PV energy yield estimates

To assess the solar resource or energy yield potential of a site, we model the solar resource/energy yield using best available information and methods. The resulting estimate is the P50 estimate, or in other words, the “best estimate”. P50 is essentially a statistical level of confidence suggesting that we expect to exceed the predicted solar resource/energy yield 50% of the time. However, ...