产品
menu item
Prospect
光伏站点太阳能潜力快速评估
menu item
Evaluate
时间序列与TMY数据用于能源建模
menu item
Monitor
实时光伏输出评估
menu item
Forecast
长达14天的太阳能输出预测
menu item
Analyst
简化统一的太阳能数据管理
menu item
集成
自动交付Solargis数据
使用案例
menu item
选址
寻找合适的太阳能项目位置
menu item
能量产出模拟
分析潜在的收益和风险
menu item
优化电厂设计
寻找最佳电厂设计
menu item
实际电厂性能
探索真实产出
menu item
电力输出预测
预测太阳能项目能量产出
menu item
地面数据验证
验证太阳能与气象测量数据质量
太阳能资源与气象评估
详细的太阳能资源验证与评估
Solargis模型应用于场地适应性调整
结合卫星数据与现场测量数据
太阳能与气象测量质量控制
修正地面测量数据中的错误
定制GIS数据服务
用定制的Solargis GIS数据
光伏能量产出评估
能量估算的不确定性和相关数据输入
光伏性能评估
再融资或资产收购的能量估算
光伏变动性与储能优化研究
理解广泛地理区域内的产出变化
区域太阳能潜力研究
太阳能电厂场地识别
我们的专业领域
我们技术的运作方式
研究方法
我们如何将科学转化为技术
API与系统集成
如何通过API集成Solargis数据
产品指南与文档
发布通知
成功案例
博客
电子书
网络研讨会
出版物
活动
免费地图与GIS数据
太阳能性能地图
关于Solargis
合作伙伴
ISO证书
人才招聘

本页未翻译。您正在浏览的是英文版本。

North America is swiftly becoming the global hotspot for hybrid solar + storage systems. Nowadays it is rare to see a new solar PV design proposal in the United States that does not incorporate a co-located storage system.

The practical and financial benefits of these systems are increasingly well understood. Integrating battery storage helps PV operators to smooth plant output and support grid stability. It also opens an array of potential new revenue streams from emerging flexibility and grid balancing services.

But managing solar + storage systems is highly complex. Storing and dispatching power at the optimal time requires an extremely granular understanding of how much power a project is generating both now and in the immediate future.

Developers, operators, and owners increasingly require high-frequency (1-minute) weather and solar irradiance data that enables them to make quick, accurate and financially effective decisions. In this blog, we outline the 5 benefits of high-frequency data for the budding solar + storage market in the US. 

58009

AES Lawai Solar Project. Photo by Dennis Schroeder / NREL 58009 

Why is high-frequency (1-minute) irradiance data so important?

In the solar sector, the frequency in which irradiance data is collected and observed can range between 60-minute intervals, all the way down to 1-minute intervals. If data is collected at 1-minute intervals, it’s being collected at an extremely granular scale, or higher-frequency. Infrequent observations, or low-frequency data, can lead to an imperfect understanding of solar irradiance behaviour.

Today, the industry continues to rely on low-frequency (60-minute) time series data during the pre-planning stage of projects, all the way through to the operational phase. As new solar + storage projects are trending towards a two-to-four-hour window, in which power is generated, stored, and dispatched, relying on 60-minute time series data causes blind spots that limit the operator’s ability to maximise revenue streams and support the grid.

More granular, high-frequency data is needed to fill these blind spots, mitigate technical and financial risks, and support the day-to-day operation of hybrid projects.

Solargis’ approach to 1-minute data

Solargis has developed a new approach to 1-minute data in collaboration with the University of Malaga. Solargis uses an extensive, multiyear worldwide database of 1-minute observations, from which the five most similar sites are used to represent the radiative conditions of a particular project site.

Additionally, Transition Probability Matrices are generated for the location of interest for four different sky classes, and several thousands of iterations are done for each cloud index value. The 1-minute times series data is generated in line with the company’s satellite-based model.

When Solargis’ 1-minute data is used with the company’s historical forecasting data, it unlocks significant financial benefits for project developers, owners and operators, enables them to make better design and dispatch decisions and more safely operate the Battery Energy Storage System (BESS). Below we outline the 5 key benefits of using Solargis’ 1-minute data and forecasting products.

5 benefits of using 1-minute data

Understanding variabilities of regional PV assets

Historical 1-minute data enables operators and utilities to understand solar resource variability in a much more granular way. In particular, 1-minute data allows operators to better understand cloud edge effects, which are a common phenomenon in PV power generation caused by the sudden increase in irradiance due to the reflections of passing clouds. This helps with the identification of nodal/sub-station level variabilities for different seasons and preparing for variable conditions.

Also, accurate or realistic sub-hourly level PV energy production forecast values are essential for grid stability and operations. With Solargis’ forecast data, project operators can make better dispatch decisions and therefore support utilities in balancing supply with demand.

Accurate clipped energy estimation

Access to high frequency data also helps developers estimate “clipping losses” more accurately, which is the lost energy caused in a solar system due to the inverter derating its output to meet either its maximum power rating, or the maximum allowable power for the grid connection.

In most cases, and depending on the region, PV plants typically underestimate clipped losses when using hourly data, which is becoming more common with larger DC to AC ratios.

Optimising battery size

Many projects are trending towards two-to-four-hour battery systems in which power is stored and dispatched. Most of the projects either engage in peak shaving, energy arbitrage or ramp support and/or other grid support services. Therefore, accurate battery design (MWh) is essential to minimize the energy yield variability of a project, as well as to optimise the type of solar + storage application.

With Solargis’ 1-minute historical data and historical forecast data, developers can design optimum-sized batteries and enhance other supplementary power electronic equipment. Therefore, 1-minute data is essential to informing the size of a battery chosen for a particular application during the project design phase, and accurately budgeting for the upfront costs of a project.

Reduction in penalties and maximising revenues

If a solar asset produces more energy than the forecasted values (day ahead and intraday), it must be curtailed to ensure grid stability. This means controlling the inverters to reduce the maximum power output, which could lead to technical strains on the system and lost energy. Contrasting this, if an asset under-delivers, the grid operator may fine the asset operator for not fulfilling their contracted production.

Solargis’ forecasting service unlocks a much more granular view of when to store and dispatch power, giving operators an enhanced ability to control the variability of power generation.

Likewise, for ramp control application, it is very important to study and model battery operations. 1-minute historical data and historical forecast data ensures that research and modelling is done in the most accurate way. Through greater control, 1-minute data reduces the number of penalties that an operator receives for not properly servicing the grid within the required ramp limitations.

Effective wholesale energy trading

For operators participating in the wholesale energy trading market, accurate forecasting, along with the market price signal data, unlocks the ability to pinpoint the most financially efficient period to charge and dispatch power from a solar + storage system. These financial studies can be modelled even before the construction of a solar + storage plant. Using historical satellite actual productions and historical market price data, battery dispatch models can be run with several contingency combinations.

With this knowledge, operators can make accurate dispatch and charging decisions that maximise their revenues when selling power to the wholesale electricity market.

 

To find out how Solargis can help with 1-minute data, attend our upcoming webinar on December 7th 2022. Register here to attend.

To find out more about Solargis’ 1-minute data methodology, click here.

Keep reading

Why to use satellite-based solar resource data in PV performance assessment
Best practices

Why to use satellite-based solar resource data in PV performance assessment

It is widely accepted that high-standard pyranometers operated under rigorously controlled conditions are to be used for bankable performance assessment of photovoltaic (PV) power systems.

How Solargis is improving accuracy of solar power forecasts
Best practices

How Solargis is improving accuracy of solar power forecasts

Just as there are horses for courses, different forecasting techniques are more suitable depending on the intended forecast lead time.

How to calculate P90 (or other Pxx) PV energy yield estimates
Best practices

How to calculate P90 (or other Pxx) PV energy yield estimates

To assess the solar resource or energy yield potential of a site, we model the solar resource/energy yield using best available information and methods. The resulting estimate is the P50 estimate, or in other words, the “best estimate”. P50 is essentially a statistical level of confidence suggesting that we expect to exceed the predicted solar resource/energy yield 50% of the time. However, ...